Pretty sure its volcanic ash or magma, hope this helps
According to snells law
<span>n1 sin theta1 = n2 sin theta2
</span>n1 = 1.333 (water)
<span>n2 = 2.42 (diamond)</span>
it is given that theta =30 degrees so
by putting the values we have
<span>1.333 sin theta = 2.42 sin 30 </span>
<span>sin theta = (2.42/1.333) *0.5 =65.2 degree
</span>so our conclusion is
<span>the ray's angle of incidence θ1 on the diamond</span> = 65.2 degree.
hope this helps
Answer:
Force's magnitude
Direction: down (towards the center of the Earth)
Explanation:
Recall that the magnetic force on a conductor of length L carrying a current I in a magnetic field B is given by the equation:
in the case the magnetic field B and the direction of the current are at 90 degrees from each other (which is our case). The direction of the force will be given by the "right hand rule" associated with the vector product that defines this force.
Since the current is moving East, and the magnetic field of the Earth goes from North to South, the resultant Force vector will be pointing towards the Earth (and perpendicular to the plane defined by the current's direction and the magnetic field B)
The magnitude of the force, is given by the formula above, and given that all quantities to be considered are is SI units, it will result in Newtons (N):

Answer:

Explanation:
From the question we are told that:
Distance 
Angle 
Force 
Generally the equation for magnitude of the stabilizing component of the brachialis force is mathematically given by



Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.