Answer:
Electrolytes are substances that can ionize in water. They could be acids, bases or salts as long as they give ions when they dissolve in water.
Explanation:
- <em>Strong electrolytes</em> completely ionize when dissolved in water, leaving no neutral molecules. The strong electrolytes here are:<u> salt water</u>, <u>baking soda (NaHCO3) solution.</u>
- <em>Weak electrolytes</em> do not completely dissociate in solution, and hence have a low ionic yield. Examples of this would be<u> vinegar </u>and <u>bleach </u>(which could be sodium hypochlorite or chlorine, which are weakly dissociated).
- <em>Non-electrolytes </em>will remain as molecules and are not ionized in water at all. In this case, <u>sugar solution is a non-electrolytes</u>, even though sugar dissolves in water, but it remains as a whole molecule and not ions.
P₄ + 10Cl₂ ---> 4PCl₅
stoichiometry of P₄ to PCl₅ is 1:4
number of moles of P₄ reacted - 28.0 g / 124 g/mol = 0.22 mol
Cl₂ is in excess therefore P₄ is the limiting reactant, amount of product formed depends on amount of limiting reactant present
according to molar ratio of 1:4
number of PCl₅ moles formed -0.22 mol x 4 = 0.88 mol
0.88 mol of PCl₅ is formed
0.3268 moles of PC15 can be produced from 58.0 g of Cl₂ (and excess
P4)
<h3>How to calculate moles?</h3>
The balanced chemical equation is

The mass of clorine is m(
) = 58.0 g
The amount of clorine is n(
) = m(
)/M(
) = 58/70.906 = 0.817 mol
The stoichiometric reaction,shows that
10 moles of
yield 4 moles of
;
0.817 of
yield x moles of 
n(
) = 4*0.817/10 = 0.3268 mol
To know more about stoichiometric reaction, refer:
brainly.com/question/14935523
#SPJ9
3 elements are present in HCOOH - hydrogen, oxygen, and carbon.
Answer:
See explanation below
Explanation:
You are not providing the starting material, however, I manage to find a similar question to this, so I'm gonna use it as a basis to help you answer yours.
Now let's analyze what is happening in the reaction so we can predict the final product.
We have a ketone here, reacting at first with LDA. This is a very strong base that is commonly used in reactions with ketones and aldehydes to promove a condensation. To do this, as LDA is a strong base it will occur firts an acid base reaction, substracting the most acidic hydrogen in the molecule (Which in this case, is the Beta hydrogen of the carbonile). This will cause an enolate formation.
Then, this enolate will react with the CH3I and form a new product. The final result would be a ketone with a methyl group now attached. In the picture 2, you have the mechanism and final product.
Hope this helps