1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
2 years ago
15

What can you add to a seatbelt ?? HELP ASAP

Engineering
1 answer:
anyanavicka [17]2 years ago
3 0
U can add a baby car seat or like those things for it not to hurt your neck
You might be interested in
A charge of +2.00 μC is at the origin and a charge of –3.00 μC is on the y axis at y = 40.0 cm . (a) What is the potential at po
Nimfa-mama [501]

a) Potential in A: -2700 V

b) Potential difference: -26,800 V

c) Work: 4.3\cdot 10^{-15} J

Explanation:

a)

The electric potential at a distance r from a single-point charge is given by:

V(r)=\frac{kq}{r}

where

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have a system of two charges, so the total potential at a certain point will be given by the algebraic sum of the two potentials.

Charge 1 is

q_1=+2.00\mu C=+2.00\cdot 10^{-6}C

and is located at the origin (x=0, y=0)

Charge 2 is

q_2=-3.00 \mu C=-3.00\cdot 10^{-6}C

and is located at (x=0, y = 0.40 m)

Point A is located at (x = 0.40 m, y = 0)

The distance of point A from charge 1 is

r_{1A}=0.40 m

So the potential due to charge 2 is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.40}=+4.50\cdot 10^4 V

The distance of point A from charge 2 is

r_{2A}=\sqrt{0.40^2+0.40^2}=0.566 m

So the potential due to charge 1 is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.566}=-4.77\cdot 10^4 V

Therefore, the net potential at point A is

V_A=V_1+V_2=+4.50\cdot 10^4 - 4.77\cdot 10^4=-2700 V

b)

Here we have to calculate the net potential at point B, located at

(x = 0.40 m, y = 0.30 m)

The distance of charge 1 from point B is

r_{1B}=\sqrt{(0.40)^2+(0.30)^2}=0.50 m

So the potential due to charge 1 at point B is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.50}=+3.60\cdot 10^4 V

The distance of charge 2 from point B is

r_{2B}=\sqrt{(0.40)^2+(0.40-0.30)^2}=0.412 m

So the potential due to charge 2 at point B is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.412}=-6.55\cdot 10^4 V

Therefore, the net potential at point B is

V_B=V_1+V_2=+3.60\cdot 10^4 -6.55\cdot 10^4 = -29,500 V

So the potential difference is

V_B-V_A=-29,500 V-(-2700 V)=-26,800 V

c)

The work required to move a charged particle across a potential difference is equal to its change of electric potential energy, and it is given by

W=q\Delta V

where

q is the charge of the particle

\Delta V is the potential difference

In this problem, we have:

q=-1.6\cdot 10^{-19}C is the charge of the electron

\Delta V=-26,800 V is the potential difference

Therefore, the work required on the electron is

W=(-1.6\cdot 10^{-19})(-26,800)=4.3\cdot 10^{-15} J

4 0
3 years ago
A home electrical system is joined to the electric company's system at the junction of the
aleksandrvk [35]

That would be B, I hope this helps!

5 0
2 years ago
A house is losing heat at a rate of 1700 kJ/h per °C temperature difference between the indoor and the outdoor temperatures. Exp
Furkat [3]

Answer:

1700kJ/h.K

944.4kJ/h.R

944.4kJ/h.°F

Explanation:

Conversions for different temperature units are below:

1K = 1°C + 273K

1R = T(K) * 1.8

= (1°C + 273) * 1.8

1°F = (1°C * 1.8) + 32

Q/delta T = 1700kJ/h.°C

T (K) = 1700kJ/h.°C

= 1700kJ/K

T (R) = 1700kJ/h.°C

= 1700kJ/h.°C * 1°C/1.8R

= 944.4kJ/h.R

T (°F) = 1700kJ/h.°C

= 1700kJ/h.°C * 1°C/1.8°F

= 944.4kJ/h.°F

Note that arithmetic operations like subtraction and addition of values do not change or affect the value of a change in temperature (delta T) hence, the arithmetic operations are not reflected in the conversion. Illustration: 5°C - 3°C

= 2°C

(273+5) - (273+3)

= 2 K

5 0
3 years ago
A drilling operation is performed on a steel part using a 12.7 mm diameter twist drill with a point angle of 118 degrees. The ho
Masteriza [31]

Answer:

a. Rotational speed of the drill  = 375.96 rev/min

b. Feed rate  = 75 mm/min

c. Approach allowance  = 3.815 mm

d. Cutting time  = 0.67 minutes

e. Metal removal rate after the drill bit reaches full diameter. = 9525 mm³/min

Explanation:

Here we have

a. N = v/(πD) = 15/(0.0127·π) = 375.96 rev/min

b. Feed rate = fr = Nf = 375.96 × 0.2 = 75 mm/min

c. Approach allowance = tan 118/2 = (12.7/2)/tan 118/2 = 3.815 mm

d. Approach allowance T∞ =L/fr = 50/75 = 0.67 minutes

e. R = 0.25πD²fr = 9525 mm³/min.

7 0
2 years ago
Convert 850 nm wavelength into frequency, eV, wavenumber, joules and ergs.
Sholpan [36]

Answer:

Frequency = 3.5294\times 10^{14}s^{-1}

Wavenumber = 1.1765\times 10^6m^{-1}

Energy = 2.3365\times 10^{-19}J

Energy = 1.4579 eV

Energy = 2.3365\times 10^{-12}erg

Explanation:

As we are given the wavelength = 850 nm

conversion used : (1nm=10^{-9}m)

So, wavelength is  850\times 10^{-9}m

The relation between frequency and wavelength is shown below as:

Frequency=\frac{c}{Wavelength}

Where, c is the speed of light having value = 3\times 10^8m/s

So, Frequency is:

Frequency=\frac{3\times 10^8m/s}{850\times 10^{-9}m}

Frequency=3.5294\times 10^{14}s^{-1}

Wavenumber is the reciprocal of wavelength.  

So,  

Wavenumber=\frac{1}{Wavelength}=\frac{1}{850\times 10^{-9}m}

Wavenumber=1.1765\times 10^6m^{-1}

Also,  

Energy=h\times frequency

where, h is Plank's constant having value as 6.62\times 10^{-34}J.s

So,  

Energy=(6.62\times 10^{-34}J.s)\times (3.5294\times 10^{14}s^{-1})

Energy=2.3365\times 10^{-19}J

Also,  

1J=6.24\times 10^{18}eV

So,  

Energy=(2.3365\times 10^{-19})\times (6.24\times 10^{18}eV)

Energy=1.4579eV

Also,  

1J=10^7erg

So,  

Energy=(2.3365\times 10^{-19})\times 10^7erg

Energy=2.3365\times 10^{-12}erg

5 0
3 years ago
Other questions:
  • In a study comparing banks in Germany and Great Britain, a sample of 145 matched pairs of banks was formed. Each pair contained
    12·1 answer
  • In engineering, economic cost is a decision-making tangible factor. Group of answer choices True False
    12·2 answers
  • A piston–cylinder device contains a mixture of 0.5 kg of H2 and 1.2 kg of N2 at 100 kPa and 300 K. Heat is now transferred to th
    8·1 answer
  • The SDS for any chemical used at a job site must be available
    6·2 answers
  • 3 examples of technology transfer pls
    12·2 answers
  • A steel rectangular tube has outside dimensions of 150 mm x 50 mm and a wall thickness of 4 mm. State the inside dimensions, the
    5·1 answer
  • A 860 kΩ resistor has 34 μA of current. What is the supply voltage for this electric circuit?
    13·2 answers
  • Two metallic terminals protrude from a device. The terminal on the left is the positive reference for a voltage called vx (the o
    9·2 answers
  • A school is playing $0.XY per kWh for electric power. To reduce its power bill, the school installs a wind turbine with a rated
    6·1 answer
  • 1 A power transmission includes a belt drive, a chain drive and a gear drive. Which of the following is the best arrangement bet
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!