Answer:
≅ 111 KN
Explanation:
Given that;
A medium-sized jet has a 3.8-mm-diameter i.e diameter (d) = 3.8
mass = 85,000 kg
drag co-efficient (C) = 0.37
(velocity (v)= 230 m/s
density (ρ) = 1.0 kg/m³
To calculate the thrust; we need to determine the relation of the drag force; which is given as:
=
× CρAv²
where;
ρ = density of air wind.
C = drag co-efficient
A = Area of the jet
v = velocity of the jet
From the question, we can deduce that the jet is in motion with a constant speed; as such: the net force acting on the jet in the air = 0
SO, 
We can as well say:

We can now replace
in the above equation.
Therefore,
=
× CρAv²
The A which stands as the area of the jet is given by the formula:

We can now have a new equation after substituting our A into the previous equation as:
=
× Cρ 
Substituting our data from above; we have:
=
× 
= 
= 110,990N
in N (newton) to KN (kilo-newton) will be:
= 
= 110.990 KN
≅ 111 KN
In conclusion, the jet engine needed to provide 111 KN thrust in order to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m³.
Answer:
answer is
a)
3/4
Explanation:
In the last 5 meters of braking, you lose 3/4 of your speed.
Answer: ε₁+ε₂+ε₃ = 0
Explanation: Considering the initial and final volume to be constant which gives rise to the relation:-
l₀l₀l₀=l₁l₂l₃

taking natural log on both sides

Considering the logarithmic Laws of division and multiplication :
ln(AB) = ln(A)+ln(B)
ln(A/B) = ln(A)-ln(B)

Use the image attached to see the definition of true strain defined as
ln(l1/1o)= ε₁
which then proves that ε₁+ε₂+ε₃ = 0