GIVEN:
Amplitude, A = 0.1mm
Force, F =1 N
mass of motor, m = 120 kg
operating speed, N = 720 rpm
=
Formula Used:
Solution:
Let Stiffness be denoted by 'K' for each mounting, then for 4 mountings it is 4K
We know that:
so,
= 75.39 rad/s
Using the given formula:
Damping is negligible, so,
will give the tranfer function
Therefore,
=
=
Required stiffness coefficient, K = 173009 N/m = 173.01 N/mm
Answer:
The Poisson's Ratio of the bar is 0.247
Explanation:
The Poisson's ratio is got by using the formula
Lateral strain / longitudinal strain
Lateral strain = elongation / original width (since we are given the change in width as a result of compession)
Lateral strain = 0.15mm / 40 mm =0.00375
Please note that strain is a dimensionless quantity, hence it has no unit.
The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.
Longitudinal strain = 4.1 mm / 270 mm = 0.015185
Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247
The Poisson's Ratio of the bar is 0.247
Please note also that this quantity also does not have a dimension
Answer:
The publication of a parody for commercial gain does not fall within the protection afforded by Section 107, as it is used for commercial gain.
Explanation:
<h2><u><em>
PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
Answer:
The temperature T= 648.07k
Explanation:
T1=input temperature of the first heat engine =1400k
T=output temperature of the first heat engine and input temperature of the second heat engine= unknown
T3=output temperature of the second heat engine=300k
but carnot efficiency of heat engine =
where Th =temperature at which the heat enters the engine
Tl is the temperature of the environment
since both engines have the same thermal capacities <em> </em> therefore
We have now that
multiplying through by T
multiplying through by 300
-
The temperature T= 648.07k
Answer:
1. cout << "Num: " << songNum << endl;
2. cout << songNum << endl;
3. cout << songNum <<" songs" << endl;
Explanation:
//Full Code
#include <iostream>
using namespace std;
int main ()
{
int songNum;
songNum = 5;
cout << "Num: " << songNum << endl;
cout << songNum << endl;
cout << songNum <<" songs" << endl;
return 0;
}
1. The error in the first cout statement is that variable songnum is not declared.
C++ is a case sensitive programme language; it treats upper case and lower case characters differently.
Variable songNum was declared; not songnum.
2. Cout us used to print a Variable that has already been declared.
The error arises in int songNum in the second cout statement.
3. When printing more than one variables or values, they must be separated with <<