Problem-Solving Tip: When cutting an FBD through an axial member, assume that the internal force is tension and draw the force arrow directed away from the cut surface. If the computed internal force value turns out to be a positive number, then the assumption of tension is confirmed.
Answer:
giberishgiberishgiberishgiberishgiberishgiberishgiberishgiberishgiberish
Explanation:
i have no idea what the question is but do u 4 real need help?
Answer:
Three ways that engineers explore possible solutions in their projects are;
1) Prototyping
2) Simulation
3) Calculations
Explanation:
1) Prototyping is the process of experimental testing of samples of design, or model of a product with the possibility of the inclusion of control of parameters in order to determine the workability of a solution.
2) Simulation is the process of creating an imitation of a situation, operation or process which can be used to determine if a particular solution will be able to work as required in the simulated environment of a problem.
3) Calculations are used to find preliminary results of particular situations, their cause and effects based on scientific laws, theories and hypothesis such that the factor of the problem is equated with the available ideas to find the best possible solution.
In Engineering, the thrust angle is checked by referencing: C. vehicle centerline.
<h3>What is a
thrust angle?</h3>
A thrust angle can be defined as an imaginary line which is drawn perpendicularly from the centerline of the rear axle of a vehicle, down the centerline.
This ultimately implies that, the thrust angle is a reference to the centerline (wheelbase) of a vehicle, and it confirms that the two wheels on both sides are properly angled within specification.
Read more on thrust angle here: brainly.com/question/13000914
#SPJ1
Answer:
23.3808 kW
20.7088 kW
Explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

Work done by pump

∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy

Work done by pump

∴ Power input to the pump 20.7088 kW