Answer:
Visible Light and Radio waves
Explanation:
The earth's atmosphere is transparent to a few windows in the electromagnetic spectrum. it is completely transparent to allow observation from the ground in visible light rang 380 to 740 nano meters. Also in the range of radio wave as communication are done from space to ground in the form of radio waves.
it is Partially transparent to Microwave and infrared range.
The energy bar eaten by Sheila has chemical energy locked up inside it. This chemical energy is converted to mechanical energy in form of potential and kinetic energy and this in turn is converted to heat energy as the run progresses. Thus, the energy changes are: chemical energy to mechanical energy [kinetic and potential] and finally to heat energy.
Answer:
Explanation:
When the spring is compressed by .80 m , restoring force by spring on block
= 130 x .80
= 104 N , acting away from wall
External force = 82 N , acting towards wall
Force of friction acting towards wall = μmg
= .4 x 4 x 9.8
= 15.68 N
Net force away from wall
= 104 -15.68 - 82
= 6.32 N
Acceleration
= 6.32 / 4
= 1.58 m / s²
It will be away from wall
Energy released by compressed spring = 1/2 k x²
= .5 x 130 x .8²
= 41.6 J
Energy lost in friction
= μmg x .8
= .4 x 4 x 9.8 x .8
= 12.544 J
Energy available to block
= 41.6 - 12.544 J
= 29 J
Kinetic energy of block = 29
1/2 x 4 x v² = 29
v = 3.8 m / s
This will b speed of block as soon as spring relaxes. (x = 0 )
Answer:
The difference between the velocity graph made walking at a steady rate means that its the same value in time, that means there's no slope on the graph, so its acceleration is 0
On the other hand, if the velocity is increasing with time, the slope of the graph becomes positive, which means that the acceleration of the particle is positive.
Answer:
200 m\ s Ans .....
Explanation:
Data:
f = 200 Hz
w = 1.0 m
v = ?
Formula:
v = f w
Solution:
v = ( 200)(1.0)
v = 200 m\s <em>A</em><em>n</em><em>s</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>