Hi pupil here's your answer ::
_____________________________
How does Newton's second law of motion gives the measurement of force?
So the answer is first : what is newton's second law? =》The rate of change of momentum of an object is equivalent to particular direction of the FORCE
=> This is how Newton's second law of motion gives the measurement of FORCE .
=>It gives measurement as the equation
》 F=MA《
Where F is force , M is mass of the object , and A is the acceleration produced .
_____________________________
hope that it helps. . . . . .
Answer:
Part a)
Mass of m2 is given as

Part b)
Angular acceleration is given as

Part c)
Tension in the rope is given as

Explanation:
Part a)
When m1 and m2 both connected to the cylinder then the system is at rest
so we can use torque balance here




Part b)
When block m_2 is removed then system becomes unstable
so force equation of mass m1

also we have

now we have




so angular acceleration is given as



Part c)
Tension in the rope is given as



A covalent bond is between two nonmetals. An ionic bond is between a metal and a nonmetal. Potassium is a metal and iodine is a nonmetal, so their bond would most likely be ionic.
Answer:
E= 55.53 x 10³ V/m
Explanation:
Given that
a= 3.63 cm
Area ,A= a²
distance ,d= 0.473 mm
Stored energy ,U = 8.49 nJ
Value of capacitor given as

By putting the values

C=2.46 x 10⁻¹¹ F

V=Voltage difference


V=26.27 V
V= E d
E=Electric filed
26.27 = E x 0.473 x 10⁻³
E= 55.53 x 10³ V/m
B. Reversing the current direction will cause the force deflecting the
wire to be perpendicular to the magnetic field but in the opposite
direction.