You don't need to worry about the 10 year bit with this question. Just grab a calculator and divide 100/2, then the answer to that (50) by 2 etc and keep dividing by 2 until you get down to 6.25.
The answer ends up being 4 half lives :)
If you don't understand what a half life is please let me know :)
Answer:
a)Distance traveled during the first second = 4.905 m.
b)Final velocity at which the object hits the ground = 38.36 m/s
c)Distance traveled during the last second of motion before hitting the ground = 33.45 m
Explanation:
a) We have equation of motion
S = ut + 0.5at²
Here u = 0, and a = g
S = 0.5gt²
Distance traveled during the first second ( t =1 )
S = 0.5 x 9.81 x 1² = 4.905 m
Distance traveled during the first second = 4.905 m.
b) We have equation of motion
v² = u² + 2as
Here u = 0, s= 75 m and a = g
v² = 0² + 2 x g x 75 = 150 x 9.81
v = 38.36 m/s
Final velocity at which the object hits the ground = 38.36 m/s
c) We have S = 0.5gt²
75 = 0.5 x 9.81 x t²
t = 3.91 s
We need to find distance traveled last second
That is
S = 0.5 x 9.81 x 3.91² - 0.5 x 9.81 x 2.91² = 33.45 m
Distance traveled during the last second of motion before hitting the ground = 33.45 m
Answer:
10m
Explanation:
The object distance and image distance is the same from the mirror. so the image is 5m behind the mirror.
5+5=10
Answer:
coefficient of static friction of the surface and the normal force
Explanation:
The coefficient of static friction of the surface and the normal force exerted on the surface given by equation F = μR