Answer:
The concentration of hydrogen ion at pH is equal to 2 :![= [H^+]=0.01 mol/L](https://tex.z-dn.net/?f=%3D%20%5BH%5E%2B%5D%3D0.01%20mol%2FL)
The concentration of hydrogen ion at pH is equal to 6 : ![[H^+]'=0.000001 mol/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%27%3D0.000001%20mol%2FL)
There are 0.009999 more moles of
ions in a solution at a pH = 2 than in a solution at a pH = 6.
Explanation:
The pH of the solution is the negative logarithm of hydrogen ion concentration in an aqueous solution.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)
The hydrogen ion concentration at pH is equal to 2 = [H^+]
![2=-\log [H^+]\\](https://tex.z-dn.net/?f=2%3D-%5Clog%20%5BH%5E%2B%5D%5C%5C)
![[H^+]=10^{-2}M= 0.01 M=0.01 mol/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-2%7DM%3D%200.01%20M%3D0.01%20mol%2FL)
The hydrogen ion concentration at pH is equal to 6 = [H^+]
![6=-\log [H^+]\\\\](https://tex.z-dn.net/?f=6%3D-%5Clog%20%5BH%5E%2B%5D%5C%5C%5C%5C)
![[H^+]=10^{-6}M= 0.000001 M= 0.000001 mol/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-6%7DM%3D%200.000001%20M%3D%200.000001%20mol%2FL)
Concentration of hydrogen ion at pH is equal to 2 =![[H^+]=0.01 mol/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.01%20mol%2FL)
Concentration of hydrogen ion at pH is equal to 6 = ![[H^+]'=0.000001 mol/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%27%3D0.000001%20mol%2FL)
The difference between hydrogen ion concentration at pH 2 and pH 6 :
![= [H^+]-[H^+]' = 0.01 mol/L- 0.000001 mol/L = 0.009999 mol/L](https://tex.z-dn.net/?f=%3D%20%5BH%5E%2B%5D-%5BH%5E%2B%5D%27%20%3D%200.01%20mol%2FL-%200.000001%20mol%2FL%20%3D%200.009999%20mol%2FL)
Moles of hydrogen ion in 0.009999 mol/L solution :

There are 0.009999 more moles of
ions in a solution at a pH = 2 than in a solution at a pH = 6.
The work done by a rotating object can be calculated by the formula Work = Torque * angle.
This is analog to the work done by the linear motion where torque is analog to force and angle is analog to distance. This is Work = Force * distance.
An example will help you. Say that you want to calculate the work made by an engine that rotates a propeller with a torque of 1000 Newton*meter over 50 revolution.
The formula is Work = torque * angle.
Torque = 1000 N*m
Angle = [50 revolutions] * [2π radians/revolution] = 100π radians
=> Work = [1000 N*m] * [100π radians] = 100000π Joules ≈ 314159 Joules of work.
Answer:
Precisely, water has to absorb 4,184 Joules of heat (1 calorie) for the temperature of one kilogram of water to increase 1°C. For comparison sake, it only takes 385 Joules of heat to raise 1 kilogram of copper 1°C.
Explanation: