Answer:
c. Moon A is four times as massive as moon B
Explanation:
Let's assume the:
- mass of the object =

- mass of the moon A =

- mass of the moon B =

- distance between the center of masses of the object and moon B =

According to the given condition the object is twice as far from moon A as it is from moon B
- ∴distance between the center of masses of the object and moon B =

<u>As we know, gravitational force of attraction is given by:</u>

<em>According to the condition</em>
Force on m due to
Force on m due to



We have:
Initial velocity (u) = 1.6 m/s
Constant acceleration (a) = 0.33 m/s²
Time (t) = 3.6 sec
There are five constant acceleration equations that would help us to find the velocity:





Since we have

and we want

We will use the first formula



m/s
Answer:
mechanical energy
Explanation:
Mechanical energy is the combination of both potential energy and kinetic
Mechanical energy can be divided as
1)kinetic energy, this energy vis regarded as the energy of motion
2) potential energy which is the stored energy of position.
Mechanical energy reffered to as
motion energy this energy is responsible for the movement of an object based on its position as well as motion.
Mechanical energy= U + K
Where U= potential energy
K= Kinectic energy
As the tire is sitting on top of a ramp, it posses "potential energy" as it is released and rolls down the ramp the potential is converted to Kinectic energy
C option
Power = voltage x current
Salutations!
If Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, _______________ is being done.
<span>If Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, work is being done. Energy being transferred and the object begins to move is called work.
Thus, your answer is option B.
Hope I helped (:
Have a great day!</span>