2H2O = 2H2 + O2.
<h3><u>Explanation</u>:</h3>
Balancing equations is very essential because of the fact that it represents the stoichiometric quantities of the reactants needed to react to form the product. The ratio of the weights of reactant and product are also very well understood from this.
Here in this equation, the water is broken into hydrogen and oxygen. The balanced reaction is
2H2O = 2H2 + O2.
Two moles of water is broken down into 2 moles of hydrogen and one mole of oxygen.
Answer:
116.5 g of SO₂ are formed
Explanation:
The reaction is:
S₈(g) + 8O₂(g) → 8SO₂ (g)
Let's identify the moles of sulfur vapor, by the Ideal Gases Law
We convert the 921.4°C to Absolute T° → 921.4°C + 273 = 1194.4 K
5.87 atm . 3.8L = n . 0.082 L.atm/mol.K . 1194.4K
(5.87 atm . 3.8L) / (0.082 L.atm/mol.K . 1194.4K) = n → 0.228 moles of S₈
Ratio is 1:8, 1 mol of sulfur vapor can produce 8 moles of dioxide
Then, 0.228 moles of S₈ must produce (0.228 . 8) /1 = 1.82 moles
We convert the moles to g → 1.82 moles . 64.06 g /1mol = 116.5 g
Answer:
0.145 moles de AlBr3.
Explanation:
¡Hola!
En este caso, al considerar la reacción química dada:
Al(s)+Br2(l)⟶AlBr3(s)
Es claro que primero debemos balancearla como se muestra a continuación:
2Al(s)+3Br2(l)⟶2AlBr3(s)
Así, calculamos las moles del producto AlBr3 por medio de las masas de ambos reactivos, con el fin de decidir el resultado correcto:

Así, inferimos que el valor correcto es 0.145 moles de AlBr3, dado que viene del reactivo límite que es el aluminio.
¡Saludos!
Answer:
(NH4)2Cr2O7
Explanation:
Hope this somehow helped.
Answer:
C.) No, because the Moon reflects most of the Sun's light rather than
absorbing it
Explanation:
:p