what is interfacial tension in liqui liquid extraction?
Answer:
The correct answer is - c. adding 10 mL bleach to 90 mL water.
Explanation:
To prepare a effective disinfecting solution to clean the countertops is a bleasce solution of 10% solution of bleach. The ten percent of the bleach solution means there are one volve of bleach and 9 volume of clean water in this solution.
So, preparing the 1/10 or ten percent solution is where adding 10 ml of bleach which is diluted to 90 ml clean water. This diluted solution can be use as disinfecting solution.
Answer:
This matters because you need to know if this site is crediable
Explanation:
You need to know this because you need to know who runs this site and if it was approved by anything crediable.
Answer:
This is a pretty straightforward example of how an ideal gas law problem looks like.
Your strategy here will be to use the ideal gas law to find the pressure of the gas, but not before making sure that the units given to you match those used by the universal gas constant.
So, the ideal gas law equation looks like this
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
P
V
=
n
R
T
a
a
∣
∣
−−−−−−−−−−−−−−−
Here you have
P
- the pressure of the gas
V
- the volume it occupies
n
- the number of moles of gas
R
- the universal gas constant, usually given as
0.0821
atm
⋅
L
mol
⋅
K
T
- the absolute temperature of the gas
Take a look at the units given to you for the volume and temperature of the gas and compare them with the ones used in the expression of
R
.
a
a
a
a
a
a
a
a
a
a
a
Need
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
Have
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
Liters, L
a
a
a
a
a
a
a
a
a
a
a
a
a
Liters, L
a
a
a
a
a
a
a
a
a
a
a
√
a
a
a
a
a
a
a
Kelvin, K
a
a
a
a
a
a
a
a
a
a
a
a
Celsius,
∘
C
a
a
a
a
a
a
a
a
a
×
Notice that the temperature of the gas must be expressed in Kelvin in order to work, so make sure that you convert it before plugging it into the ideal gas law equation
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
T
[
K
]
=
t
[
∘
C
]
+
273.15
a
a
∣
∣
−−−−−−−−−−−−−−−−−−−−−−−−
Rearrange the ideal gas law equation to solve for
P
P
V
=
n
R
T
⇒
P
=
n
R
T
V
Plug in your values to find
P
=
0.325
moles
⋅
0.0821
atm
⋅
L
mol
⋅
K
⋅
(
35
+
273.15
)
K
4.08
L
P
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
2.0 atm
a
a
∣
∣
−−−−−−−−−−−
The answer is rounded to two sig figs, the number of sig figs you have for the temperature of the gas.
So it's good to map out what you know you have and work from there:
We have two liter measurements and one mole measurement, and we need to find the moles.
For this problem, think of it this way: 46 liters of gas = 1.4 moles.
If one side changes, the other has to as well (if the liters decrease, the moles decrease. if the liters increase, so do the moles.) What you can do is put this into a fraction:
<span><u>1.4 moles</u></span>
46 L <span> </span>
if we know that each liter of gas is equal to x amount of moles, we know that 11.5 liters equals some amount of moles. You can put this into a fraction too, and make it equal to the other fraction:
<span><u>1.4 moles</u></span> = <u>x moles</u>
46 L 11.5 L
Then get your calculator out and do some algebra.
11.5 * (1.4/46) = x
The answer should come out to be: 0.35 moles