The pressure of the gas is 1.0 bar.
<em>pV</em> = <em>nRT</em>
<em>T</em> = (0 + 273.15) K = 273.15 K
<em>p</em> = (<em>nRT</em>)/<em>V</em> = (2.0 mol × 0.083 14 bar·L·K⁻¹mol⁻¹ × 273.15 K)/44.8 L = 1.0 bar
Answer:
The average yearly rate of change of carbon-14 during the first 5000 years = 0.0004538 grams per year
Explanation:
Given that the mass of the carbon 14 at the start = 5 gram
At the end of 5,000 years we will have;

Where
A = The amount of carbon 14 left
A₀ = The starting amount of carbon 14
e = Constant = 2.71828
= The half life

t = The time elapsed = 5000 years
λ = 0.693/
= 0.693/5730 = 0.0001209424
Therefore;
A = 5 × e^(-0.0001209424×5000) = 2.7312 grams
Therefore, the amount of carbon 14 decayed in the 5000 years is the difference in mass between the starting amount and the amount left
The amount of carbon 14 decayed = 5 - 2.7312 = 2.2688 grams
The average yearly rate of change of carbon-14 during the first 5000 years is therefore;
2.2688 grams/(5000 years) = 0.0004538 grams per year
The average yearly rate of change of carbon-14 during the first 5000 years = 0.0004538 grams per year.
Answer:
RTBWETERTBWETBWETWTBTBAnswer:
Explanation:
Answer:
Explanation:
Answer:
BSRBTSTR
Explanation:
Answer:ETRTSBT
REBREGERB
Explanation:
Answer:
REBRBETSERTETREERSTSER
Explanation:SETRSBE
Answer:RETERTSE
TBESRBTBTRE
Explanation:
Explanation:
<u>Answer:</u>
a) number of neutrons
<u>Explanation:</u>
A sodium ion is formed when an electron is removed from a sodium atom. This means that the atom's number of electrons changes, but the number of neutrons remains unchanged.
However, as the number of electrons changes, the electric charge and the electronic structure change, which means that a sodium atom and a sodium ion do not have the same number of electrons, nor do they have the same electric charge or electronic structure.
Therefore, option a) is the correct option.