Answer:

Explanation:
We can use the following kinematics equations to solve this problem:
.
Using the first one to solve for acceleration:
.
Now we can use the second equation to solve for the distance travelled by the airplane:
(three significant figures).
Answer:
x = -6.5 meters
Explanation:
The position of a ball as a function of time t is given by :
..................(1)
Where t is time in seconds
We need to find the position of the ball at 1.9 s. It can be simply calculated putting t = 1.9 s in equation (1) as :

x = -6.5 meters
So, the position of the ball at 1.9 seconds is -6.5 meters. Hence, this is the required solution.
Nonmetals often share or gain
electrons. The nonmetals in the periodic table increases as you move to the
right and decreases as you go down. This is because, the smaller the atom, the
reactive it gets due to less electron attached to the orbits of the atom. The
reactivity of nonmetals is arranged in decreasing order.
<span>
Carbon
</span>
Nitrogen
Oxygen
Fluorine
Phosphorus
<span>
Sulfur</span>
Chlorine
<span>
Selenium</span>
<span>
Bromine</span>
<span>
Iodine</span>
Answer:
e) indicated that the speed of light is the same in all inertial reference frames.
Explanation:
In 18th century, many scientists believed that the light just like air and water needs a medium to travel. They called this medium <em>aether</em>. They believed that even the space is not empty and filled with aether.
Michelson and Morley tried to prove the presence and speed of this aether through an interference experiment in 1887. They made an interferometer in which light was emitted at various angles with respect to the supposed aether. Both along the flow and against the flow to see the difference in the speed of light. But they did not find no major difference and thus it became the first proof to disprove the theory of aether.
It thus proved that the speed of light remains same in all inertial frames.
Also, it became a base for the special theory of relativity by Einstein.