Electromagnetic transverse waves
Answer:
At the molecular level, materials are held together by bonds, which act like springs for small displacements from the equilibrium spacing between neighboring atoms. Push the atoms close, the bond pushes back to keep them apart. Pull them apart, the bond pulls the atoms closer. For those small displacements, it acts like a spring
The speed of the wave will be related to the stiffness of of those springs - you compress the material - how quickly do all of those little springs rebound and push their neighboring atoms away, sending that wave of compression through the material.
Explanation:
Answer:
astronomical unit
Explanation:
https://en.wikipedia.org/wiki/Astronomical_unit
From the Hooke's law , the extension force of an elastic material is directly proportional to the extension.
That is, F = k e, where F is the force , k is the constant and e is the extension
F = 10 × 10 = 100 N
e = 1mm or 0.001 m
Hence, k = F/e
= 100 N/ 0.001
= 100000 N/m or 100 N/mm
Answer:
The magnitude of the force is 12 N Upwards
Explanation:
The force on a positive charge will be in the same direction as the field, but the force on a negative charge will be in the opposite direction to the field. Thus the direction of the force is upward.
Given;
magnitude of charge, q = 0.06 C
magnitude of electric field, E = 200 N/C
The magnitude of the force is given by;
F = qE
F = 0.06 x 200 N/C
F = 12 N Upwards
Therefore, the magnitude of the force is 12 N Upwards