Answer:
2.1 rad/s
Explanation:
Given that,
Mass of a tether ball, m = 0.546 kg
Length of a rope, l = 4.56 m
The maximum tension the rope can withstand before breaking is 11.0 N
We need to find the maximum angular speed of the ball. Let v is the linear velocity. The maximum tension is balanced by the centripetal force acting on it. It can be given by :
Let is the angular speed of the ball. The relation between the angular speed and angular velocity is given by :
So, the maximum angular speed of the ball is 2.1 rad/s.
Bending occurs when one side of the wave enters the new medium before the other side of the wave. ... The bending occurs because the two sides of the wave are traveling at different speeds.
The Gay-Lussac's law or Amonton's law states that the pressure of a given amount of a gas is directly propotional to its temperature if its volume is kept constant .
P∝T
and
The Charles Law states that volume of given amount of gas at constant pressure is directly propotional to temperature.
V∝T
So, by Gay-Lussac's law if we increase the temperature the Pressure will increase and by Charles Law, if we increase the temperature the volume will increase.
Therefore, if the temperature of gas increases either the pressure of the gas, the volume of the gas, or both, will increase.
Hence,
Answer is option C
It is either the mass or density, I believe it is 3 density tho but it could be mass good luck:)