Answer:
the ion present in the original solution is Ca2+
Explanation:
Precipitation reactions occur when cations and anions in aqueous solution combine to form an insoluble ionic solid called a precipitate.
<u>Step1</u> : If we add Nacl to the solution, there is no precipitate formed
⇒The only possible ion that can form a precipate with Cl- is Ag+; since there is no precipitate formed, Ag+ is not present
<u>Step2</u> : If we add Na2SO4 to the solution, a white precipitate is formed
The possible ions to bind at SO42- are Ca2+ and Fe2+
But the white precipitate formed, points in the direction of Ca2+
⇒This means calcium is present
<u>Step3</u> : If we add Na2CO3 to the filtered solution, there is a precipate formed
Ca2+ will bind also with CO32- and form a precipitate
So the ion present in the original solution is Ca2+
Answer:
lower viscosity than syrup
Answer:
Tests for unsaturation involves addition across the multiple bonds in the unsaturated compound.
Explanation:
In organic chemistry, we define an unsaturated compound as any compound that contains a double or triple bond. These multiple bonds are also known as pi bonds.
There are two major tests for unsaturation which shall both be discussed here.
The first test for unsaturation is by the use of bromine water. The unknown sample is passed through a solution of bromine water which normally appears reddish brown. The bromine water becomes decolorized due to addition of bromine across the multiple bond. This is a standard test for unsaturation.
Secondly, unsaturated compounds decoulourize a solution of potassium permanganate when passed through it. This alone can not be used as a distinctive test for unsaturation.
Propenoic acid will give a positive test to the both reagents showing that it contains multiple bonds, in this particular instance, a double bond.
Mass number- number of neutrons= number of protons.
52-27=25 protons.
Number of protons = atomic number =25
It is Mn (manganese).
Answer:
1
Explanation:
The equation is already balanced, and on the left hand side (reactants side), we see that there's one CH4 molecule and 2 O2 molecules. We don't care about the O2 molecules in this case, so we turn our focus to the CH4 molecule. One CH4 molecule has one carbon atom and 4 H atoms, so we know that there's only one carbon atom on the reactants side.