Answer:
A metal only replaces a metal, and a nonmetal only replaces a nonmetal. Only a more reactive element can replace the other element in the compound with which it reacts.
A) At 0 C water forms ice but as mentioned above F) water's greatest density occurs at 4 C and it decreases below 4 C so ice is lighter than 4C water, thus, at 0C ice comes to surface and acts as insulator thereby preventing lower water from freezing.
Answer is: tin and zinc, because they standard potential as less than zero.
Tin and zinc are oxidized to tin and zinc cations (with +2 charge) and hydrogen anions are reduced to hydrogen molecules with neutral charge.
Zn → Zn²⁺ + 2e⁻; 2H⁺ + 2e⁻ → H₂.
<span>Oxidation is increase
of oxidation number and reduction is decrease
of oxidation number.</span>
Answer:
20.25 W
Explanation:
Applying,
P = I²R.................... Equation 1
Where P = Power, I = current drawn by the test light, R = Resistance of the test light
From the question,
Given: I = 1.5 A, R = 9.00 Ω
Substitute these values into equation 1
P = (1.5²)(9)
P = 2.25×9
P = 20.25 W
Answer:
The alkyl halide is secondary
The nucleophile is a poor nucleophile
The solvent is a protic solvent
The product is racemic
Explanation:
The reaction is shown in the image attached.
Alkyl halides undergo nucleophilic substitution by two mechanisms; SN1 and SN2. The particular mechanism that applies depends on;
I) structure of the alkyl halide
ii) nature of the nucleophile
iii) nature of the solvent
Looking at the reaction under review, we can see from the structure that the alkyl halide is a secondary alkyl halide. A secondary alkyl halide may undergo substitution via SN1 or SN2 mechanism depending on the conditions of the reaction.
If the nucleophile is poor, and the solvent is protic, SN1 mechanism is favoured over SN2 mechanism. Since CH3CH2OH is a poor nucleophile and ethanol is a protic solvent, we expect the reaction to proceed via SN1 mechanism leading to the formation of a racemic product.
The organic product is also shown in the second image attached.