Answer:
Mass = 15.20 g of KCl
Explanation:
The balance chemical equation for the decomposition of KClO₃ is as follow;
2 KClO₃ = 2 KCl + 3 O₂
Step 1: Calculate moles of KClO₃ as;
Moles = Mass / M/Mass
Moles = 25.0 g / 122.55 g/mol
Moles = 0.204 moles
Step 2: Find moles of KCl as;
According to equation,
2 moles of KClO₃ produces = 2 moles of KCl
So,
0.204 moles of KClO₃ will produce = X moles of KCl
Solving for X,
X = 2 mol × 0.204 mol / 2 mol
X = 0.204 mol of KCl
Step 3: Calculate mass of KCl as,
Mass = Moles × M.Mass
Mass = 0.204 mol × 74.55 g/mol
Mass = 15.20 g of KCl
8.4 grams. I think but I’m not 100% sure
Its A. the energy is stored within the nuclear of the atom
Answer:

Explanation:
The original calculation to find the number of moles which is
can be rearranged to give the equation
. Therefore the amount of molecules can be found by
(multiplying by Avogadro's Number)
Answer:
The ability of the molecule to pack more tightly increases the melting point.
Explanation:
In hydrocarbons of same molecular formula, melting point is determined by:
- weak intermolecular forces
- Molecular symmetry
Higher the intermolecular forces and molecular symmetry, higher will be the melting point.
Intermolecular forces in hydrocarbons decreases with branching. Moreover, branching interfere the tight packing of the molecule in the crystal. Therefore, branched hydrocarbons tend to have lower melting point.
However, in highly branched hydrocarbons molecular symmetry increases which results in tight packing of the molecule in the crystal.
So, highly tight packed molecules tend to have high melting point.
As (CH3)2CHC(CH3)3 is highly branched and has high molecular symmetry, therefore, its melting point is highest among given.
So, among the given, option c is correct.