Answer: green house affect is the sun on plants it is transfering energy to the plants to help them grow same with every plant, tree, fruit tree. everything needs sun.
Explanation: look up there.
Ignore my writing answer is in pictute
Answer:
The arm that was not sprayed with anything
Explanation:
The control group would be <u>the arm that was not sprayed with anything</u>.
<em>The control group during an experiment is a group that forms the baseline for comparison in other to determine the effects of a treatment. The control group does not include the variable that is being tested and as such, it provides the benchmark to measure the effects of the tested variable on the other group - the experimental group. In this case, the experimental group would be the arm that was sprayed with the repellent.</em>
Answer:
ΔH for formation of 197g Fe⁰ = 1.503 x 10³ Kj => Answer choice 'B'
Explanation:
Given Fe₂O₃(s) + 2Al⁰(s) => Al₂O₃(s) + 2Fe⁰(s) + 852Kj
197g Fe⁰ = (197g/55.85g/mol) = 3.527 mol Fe⁰(s)
From balanced standard equation 2 moles Fe⁰(s) => 852Kj, then ...
3.527 mole yield (a higher mole value) => (3.527/2) x 852Kj = 1,503Kj (a higher enthalpy value).
______
NOTE => If 2 moles Fe gives 852Kj (exo) as specified in equation, then a <u>higher energy value</u> would result if the moles of Fe⁰(s) is <u>higher than 2 moles</u>. The ratio of 3.638/2 will increase the listed equation heat value to a larger number because 197g Fe⁰(s) contains more than 2 moles of Fe⁰(s) => 3.527 mole Fe(s) in 197g. Had the problem asked for the heat loss from <u>less than two moles Fe⁰(s)</u> - say 100g Fe⁰(s) (=1.79mole Fe⁰(s)) - then one would use the fractional ratio (1.79/2) to reduce the enthalpy value less than 852Kj.