Answer:
Photon of light
Explanation:
According to Bohr's model of the atom, electrons in atoms are found in specific energy levels. These energy levels are called stationary states, an electrons does not radiate energy when it occupies any of these stationary states.
However, an electron may absorb energy and move from one energy level or stationary state to another. The energy difference between the two energy levels must correspond to the energy of the photon of light absorbed in order to make the transition possible.
Since electrons are generally unstable in excited states, the electron quickly jumps back to ground states and emits the excess energy absorbed. The frequency or wavelength of the emitted photon can now be measured and used to characterize the transition. This is the principle behind many spectrometric and spectrophotometric methods.
Answer:
a have stripped pattern
Explanation:
did it on edunuity and studied on quizlet
Answer:
C) an increase in rate of reaction because reactant molecules collide with greater energy
Explanation:
Temperature is one of the factors that affect the rate of a reaction. The rate of a reaction increases with an increase in temperature and vice versa. When the temperature of a reaction increases, the kinetic energy of the reactant molecules increases causing them to react at a faster rate.
The reactant molecules respond to an increase in temperature by colliding at a faster rate due to an increased kinetic energy between the reactant molecules.
1 kg = 1000g
2.43 kg *1000g/1kg = 2430 g
Answer:
-252.5 kJ/mol = ΔH H2O(g)
Explanation:
ΔH Fe2O3 = -825.5kJ/mol
ΔH H2 = 0kJ/mol
ΔH Fe = 0kJ/mol
Based on Hess's law, ΔH of a reaction is the sum of ΔH of products - ΔH of reactants. For the reaction:
Fe2O3(s) + 3 H2(g) →2Fe(s) + 3 H2O(g)
ΔHr = 67.9kJ/mol = 3*ΔH H2O + 2*ΔHFe - (ΔH Fe2O3 + 3*Δ H2)
67.9kJ/mol = 3*ΔH H2O + 2*0kJ/mol - (ΔH -825.5kJ/mol + 3*Δ H2)
67.9 = 3*ΔH H2O(g) + 825.5kJ/mol
-757.6kJ/mol = 3*ΔH H2O(g)
<h3>-252.5 kJ/mol = ΔH H2O(g)</h3>