In Longitudinal waves, particles of the medium vibrate around their mean positions. Their amplitude of vibration is in the direction of the propagation of the wave. In transverse wave of longitudinal wave, <em>the wavelength is always the distance between two particles which are in the same phase.</em>
If we take pressure waves, (sound waves), we have pressure variations created by sound wave along its path. Pressure is maximum at compression regions and pressure is minimum at rarefaction region. In between the two, pressure of air remains as the pressure when there is no wave.
<em>The wave length is then the distance between two consecutive rarefactions or two consecutive compression regions.</em>
<em>It is also the distance traveled by the wave in one time period.</em> Time period is the time the particles in the medium take to vibrate towards the end, turn back to reach the other end of their oscillation and then reach back their position.
40 miles at 20 mph takes 2 hours
180 miles at 60 mph takes 3 hours
<span>Average speed = Total distance / Total time </span>
<span>= (40 + 180) / (2 + 3) </span>
= 220 / 5
= 44
<span>The correct answer is 44 m/s</span>
Answer:
272.89g
Explanation:
Find the diagram to the question in the attachment below;.
Using the principle of moment to solve the question which states that the sum of clockwise moment is equal to the sum of anticlockwise moment.
Moment = Force * Perpendicular distance
Taking the moment of force about the pivot.
Anticlockwise moment:
The 85g mass will move in the anticlockwise
Moment of 85g mass = 85×36.6
= 3111gcm
Clockwise moment.
The mass of the metre stick M situated at the centre (50cm from each end) will move in the clockwise direction towards the pivot.
CW moment = 11.4×M = 11.4M
Equating CW moment to the ACW moment we will have;
11.4M = 3111
M = 3111/11.4
M = 272.89g
The mass of the metre stick is 272.89g
<span>7.8x102
x 1.95x10<span>3 this is the answer mate
</span></span>