Explanation:
We start by using the conservation law of energy:

or

Simplifying the above equation, we get

We can rewrite this as

Note that the expression inside the parenthesis is simply the acceleration due to gravity
so we can write

where
is the launch velocity.
You just need to replace x with 5 in each function
.5^5 - 11
-5-3
.5 ^-6
-8
64 - 8 = 56 A Celcius
Hope this helps
Answer:
Your answer would be C <u><em>Hope this helps</em></u>
Answer: no
Explanation:
because the object is moving downwards so it will be called decceleration . which is the opposite of acceleration .
Answer:
11.07Hz
Explanation:
Check the attachment for diagram of the standing wave in question.
Formula for calculating the fundamental frequency Fo in strings is V/2L where;
V is the velocity of the wave in string
L is the length of the string which is expressed as a function of its wavelength.
The wavelength of the string given is 1.5λ(one loop is equivalent to 0.5 wavelength)
Therefore L = 1.5λ
If L = 3.0m
1.5λ = 3.0m
λ = 3/1.5
λ = 2m
Also;
V = √T/m where;
T is the tension = 0.98N
m is the mass per unit length = 2.0g = 0.002kg
V = √0.98/0.002
V = √490
V = 22.14m/s
Fo = V/2L (for string)
Fo = 22.14/2(3)
Fo = 22.14/6
Fo = 3.69Hz
Harmonics are multiple integrals of the fundamental frequency. The string in question resonates in 2nd harmonics F2 = 3Fo
Frequency of the wave = 3×3.69
Frequency of the wave = 11.07Hz