Answer:
The kinetic energy of the more massive ball is greater by a factor of 2.
Explanation:
By conservation of energy, we know that the initial energy = final energy. At first, the balls are dropped from a height with no initial velocity so their initial energy is all potential energy. When they reach the bottom, all their energy is kinetic energy. So all of their energy is changed from potential to kinetic energy. This means that the ball with greater potential energy will have a greater kinetic energy.
Potential energy = mgh. Since g = gravity is a constant and h = height is the same, the only difference is mass. Since mass is directly proportional to potential energy, the greater the mass, the greater the potential energy, so the more massive ball has a greater initial potential energy and will have a greater kinetic energy at the bottom.
Additionally, let B1 = lighter ball with mass m and let B2 = heavier ball with mass m2. Since we know that intial potential energy = final kinetic energy. We can rewrite it as potential energy = kinetic energy = mass * gravity constant * height. For B1, it is mgh and for B2 it is 2mgh, so B2's kinetic energy is twice that of B1.
Answer:
a) Maximum speed = 25.28 m/s
b) Total time = 27.27 s
c) Total distance traveled = 402.43 m
Explanation:
a) Maximum speed is obtained after the end of acceleration
v = u + at
v = 13.5 + 1.9 x 6.2 = 25.28 m/s
Maximum speed = 25.28 m/s
b) We have maximum speed = 25.28 m/s, then it decelerates 1.2 m/s² until it stops.
v = u + at
0 = 25.28 - 1.2 t
t = 21.07 s
Total time = 6.2 + 21.07 = 27.27 s
c) Distance traveled for the first 6.2 s
s = ut + 0.5 at²
s = 13.5 x 6.2 + 0.5 x 1.9 x 6.2² = 120.22 m
Distance traveled for the second 21.07 s
s = ut + 0.5 at²
s = 25.28 x 21.07 - 0.5 x 1.2 x 21.07² = 282.21 m
Total distance traveled = 120.22 + 282.21 = 402.43 m
The characteristics of standing waves allows to find the result for the speed of the wave is:
- The speed wave is: v = 10 m / s
The wave is a way of transmitting energy without mass displacement, , in the attachment we can see a diagram of the standing wave.
Each cycle corresponds to half a wavelength, they indicate that the frequency is 2.50 Hz and there are three cycles, so the wavelength is:
L =
λ = 2L/n
λ = 2 6 /3
λ = 4 m
Wave speed is related to wavelength and frequency
v = λ f
v = 4 2.5
v = 10 m / s
In conclusion, using the characteristics of standing waves we can find the result for the speed of the wave is:
- The wave speed is: v = 10 m / s
Learn more here: brainly.com/question/12536719
Momentum is a product mass and velocity. If a certain object posses a kinetic energy, then it should have a momentum since it is moving which has a velocity. However, if the object is at rest and only has potential energy, then it would not have momentum. So, for the first question the answer would be yes, an object can have energy without having any momentum. For the second question, every object whether it is moving or at rest, possess some energy, potential for an object at rest and kinetic for an object that is moving. Thus, the answer would be no, an object having momentum would always have energy.