Answer:
<em>The velocity of the carts after the event is 1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

The m1=2 kg cart is moving to the right at v1=5 m/s. It collides with an m2= 8 kg cart at rest (v2=0). Knowing they stick together after the collision, the common speed is:

The velocity of the carts after the event is 1 m/s
No
It means the resultant electrical charges had canceled each other out so there is no field to be sensed .
Answer:

Explanation:
The final velocity is given by the following kinematic equation:

Here,
is the initial velocity, a is the body's acceleration and t is the motion time. We have to convert the time to seconds:

Now, we calculate the final velocity:

Part of the scientific process involves sharing your results with other scientists. To do this, we all need to use the same measurement system, which you'll learn about in this lesson.
Imagine you're trying to find out how much an elephant weighs. You're pretty sure it weighs a lot, but you don't know the exact number. So you ask your teacher, and she tells you an elephant weighs the same as three hippos.
Well that's nice to know, but how much does a hippopotamus weigh? Again, you ask your teacher, and she tells you a hippopotamus weighs the same as five alligators. That's a cool fact to know, but you still don't understand how much an elephant weighs because comparing elephants to alligators can be confusing.
plz mark me as brainliest :)