Answer:
The leverage or mechanical advantage of pulleys is less obvious, but you can "gang" multiple pulleys together into two sets (blocks) and run the ropes back and forth between the two sets to increase the number of lengths of rope running between them. One end of the rope is connected (fixed) to one of the blocks, and you get to pull on the other end after it is passed back and forth between the blocks of pulleys. This is sometimes called a block and tackle arrangement. With a hook on each side of the block set, you can move a heavy load much like levers do, by multiplying the force. You have to pull more rope just like you have to move a lever more on one side of the fulcrum as compared to the other. When you get all the rope pulled out that you can, you can not move the load anymore because you have become "two-blocked" which means the two blocks are together. Credits to: Moin Khan
The final velocity is 5.87 m/s
<u>Explanation:</u>
Given-
mass,
= 72 kg
speed,
= 5.8 m/s
,
= 45 kg
,
= 12 m/s
Θ = 60°
Final velocity, v = ?
Applying the conservation of momentum:
X
+
X
= (
+
) v
72 X 5.8 + 45 X 12 X cos 60° = (72 + 45) v
v = 417.6 + 540 X 
v = 417.6 + 
v = 5.87 m/s
The final velocity is 5.87 m/s
It increases confidence because the more times you conduct the same experiment over and over should either prove your hypothesis right and wrong and eliminate any random occurrences that might affect your results.
His total displacement from his original position is -1 m
We know that total displacement of an object from a position x to a position x', d = final position - initial position.
d = x' - x
If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.
Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.
His final position, x" after moving back 6 m is gotten from
x" - x' = -6 m
x" = -6 + x'
x" = -6 + 5
x" = -1 m
Thus, his total displacement from his original position is
d = final position - initial position
d = x" - x
d = -1 m - 0 m
d = -1 m
So, his total displacement from his original position is -1 m
Learn more about displacement here:
brainly.com/question/17587058
Answer:
So lift will be 30.19632 N
Explanation:
We have given area of the wing 
We know that density of air 
Speed at top surface
and speed at bottom surface 
According to Bernoulli's principle force is given by