1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
3 years ago
9

Why can't you see individual atoms with special tools?

Physics
1 answer:
kotegsom [21]3 years ago
7 0

Answer:

Atoms are so much smaller than the wavelength of visible light that the two don't really interact.

Explanation:

To put it another way, atoms are invisible to light itself.

You might be interested in
A torque of 36.5 N · m is applied to an initially motionless wheel which rotates around a fixed axis. This torque is the result
vivado [14]

Answer:

21.6\ \text{kg m}^2

3.672\ \text{Nm}

54.66\ \text{revolutions}

Explanation:

\tau = Torque = 36.5 Nm

\omega_i = Initial angular velocity = 0

\omega_f = Final angular velocity = 10.3 rad/s

t = Time = 6.1 s

I = Moment of inertia

From the kinematic equations of linear motion we have

\omega_f=\omega_i+\alpha_1 t\\\Rightarrow \alpha_1=\dfrac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha_1=\dfrac{10.3-0}{6.1}\\\Rightarrow \alpha_1=1.69\ \text{rad/s}^2

Torque is given by

\tau=I\alpha_1\\\Rightarrow I=\dfrac{\tau}{\alpha_1}\\\Rightarrow I=\dfrac{36.5}{1.69}\\\Rightarrow I=21.6\ \text{kg m}^2

The wheel's moment of inertia is 21.6\ \text{kg m}^2

t = 60.6 s

\omega_i = 10.3 rad/s

\omega_f = 0

\alpha_2=\dfrac{0-10.3}{60.6}\\\Rightarrow \alpha_1=-0.17\ \text{rad/s}^2

Frictional torque is given by

\tau_f=I\alpha_2\\\Rightarrow \tau_f=21.6\times -0.17\\\Rightarrow \tau=-3.672\ \text{Nm}

The magnitude of the torque caused by friction is 3.672\ \text{Nm}

Speeding up

\theta_1=0\times t+\dfrac{1}{2}\times 1.69\times 6.1^2\\\Rightarrow \theta_1=31.44\ \text{rad}

Slowing down

\theta_2=10.3\times 60.6+\dfrac{1}{2}\times (-0.17)\times 60.6^2\\\Rightarrow \theta_2=312.03\ \text{rad}

Total number of revolutions

\theta=\theta_1+\theta_2\\\Rightarrow \theta=31.44+312.03=343.47\ \text{rad}

\dfrac{343.47}{2\pi}=54.66\ \text{revolutions}

The total number of revolutions the wheel goes through is 54.66\ \text{revolutions}.

3 0
3 years ago
What is magnification
il63 [147K]
The action or process of magnifying something or being magnified, especially visually. Hope this helped
5 0
4 years ago
Name the four fundamental fores at work inside an atom. Tell what each one does.​
STALIN [3.7K]

Answer:

Four fundamental forces are gravitational, electromagnetic, strong, and weak.

Explanation:

The gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life and the strong and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions.

6 0
3 years ago
Use your data (attachment) from Part 3 and Newton’s laws to explain why the force meter measures a force if the cart is moving a
vazorg [7]
The cart experiences a frictional force which is directly proportional to its weight. This means that there must be a force applied on the car to balance the forces on the car to produce a net force of 0.
This is in accordance to Newton's first law which states that an object at rest will remain at rest and an object in motion will remain in motion unless an external force acts on it. The force must be a resultant force.
Therefore, the force needed increases with the total weight of the cart as well as with the added mass in a linear manner.
4 0
3 years ago
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Other questions:
  • The capacity of a storage battery, such as those used in automobile electrical systems, is rated in ampere-hours (A⋅h). A 50 A⋅h
    15·1 answer
  • Be sure to answer all parts. Compare the wavelengths of an electron (mass = 9.11 × 10−31 kg) and a proton (mass = 1.67 × 10−27 k
    11·1 answer
  • What is the displacement for a driver who travels 10 km to get to a point that is 4 km from his starting point?
    5·1 answer
  • A convex lens with focal length 9 cm forms an image of an object placed 21 cm to the left of the lens. what is the distance to t
    8·1 answer
  • The lowest possible temperature in outer space is 3.13 K. What is the rms speed of hydrogen molecules at this temperature? (The
    7·1 answer
  • Two bricks are released at the same time from the same point ten feet above the ground. One of the bricks is falling straight do
    6·1 answer
  • An atoms valence electrons are those electrons that have the highest energy true or false
    12·1 answer
  • On a frozen pond, a 10.3 kg sled is given a kick that imparts to it an initial speed of vo = 1.64 m/s. The coefficient of kineti
    15·1 answer
  • A 0.300 kg ball, moving with a speed of 2.5 m/s, has a head-on collision with at 0.600 kg ball initially at rest. Assuming a per
    14·1 answer
  • A bird takes off from the tree and after 5 s is flying at a speed of 10 m/s. Calculate
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!