Before a person walks through burning coal, the person will make sure their feet are very wet. When they start walking on the coal, this moisture will evaporate and form a protective gas layer underneath the person's feet. You can see examples of this if you happen to drip some water on a hot stove or any very hot surface. The water will very easily glide around on top of a newly formed layer of air underneath it -- like air hockey pucks on an air hockey table. Note that when someone walks through burning coal, typically this is also done very quickly to prevent a great deal of exposure to possible harm. By walking quickly, thinking positively, and letting the water cushion you from immediate danger over a short distance, such a task is possible. You may have also heard of physics teachers demonstrating how this principle works by sticking their hand first in a bucket of water and then quickly in a bucket of boiling molten lead. In the lead, their hand is protected briefly by a layer of gas from the evaporated water (the water vapor). I'm fairly sure that there is a name for this particular layer of gas, but I'm afraid the name is beyond me at the moment. In other words, water vapor has a low heat capacity and poor thermal conduction. Very often, the coals or wood embers that are used in fire walking also have a low heat capacity. Sweat produced on the bottom of people's feet also helps form a protective water vapor. All of this together makes it possible, if moving quickly enough, to walk across hot coals without getting burned. WARNING: Do not attempt to perform any of the actions described above. You can seriously injure yourself. Answered by: Ted Pavlic, Electrical Engineering Undergrad Student, Ohio St. (citing my source)
Answer:
Condensation.
Explanation:
The boiling point of water is much higher than that of either nitrogen or oxygen gas . So when the mixture is condensed to a temperature lower than
100°C , water vapor will come out first in the form of water leaving other
elements of mixture in gaseous phase. In this way, water vapor will get separated from others.
Answer:
node
Explanation:
on the graph node is higher than antinode
so it can get or hear loud sounds faster
Answer:
1. increases
2. increases
3. increases
Explanation:
Part 1:
First of all, since the box remains at rest, the horizontal net force acting on the box must equal zero:
F1 - fs = 0.
And this friction force fs is:
fs = Nμs,
where μs is the static coefficient of friction, and N is the normal force.
Originally, the normal force N is equal to mg, where m is the mass of the box, and g is the constant of gravity. Now, there is an additional force F2 acting downward on the box, which means it increases the normal force, since the normal force by Newton's third law, is the force due to the surface acting on the box upward:
N = mg + F2.
So, F2 is increasing, that means fs is increasing too.
Part 2:
As explained in the part 1, N = mg + F2. F2 is increasing, so the normal force is thus increasing.
Part 3:
In part 1 and part 2, we know that fs = Nμs, and since the normal force N is increasing, the maximum possible static friction force fs, max is also increasing.
Answer:
A) 

B) 
C) 

Explanation:
For this case we want to create a function like this:

Where Z represent the degrees for the Z scale C the Celsius grades and tha valus a and b parameters for the model.
The boiling point of nitrogen is -195,8 °C
The melting point of iron is 1538 °C
We know the following equivalences:
-195.8 °C = 0 °Z
1538 °C = 1000 °Z
Let's say that one point its (1538C, 1000 Z) and other one is (-195.8 C, 0Z)
So then we can calculate the slope for the linear model like this:

And now for the slope we can use one point let's use for example (-195.8C, 0Z), and we have this:

And if we solve for b we got:

So then our lineal model would be:

Part A
The boiling point of water is 100C so we just need to replace in the model and see what we got:

Part B
For this case we have Z =100 and we want to solve for C, so we can do this:


Part C
For this case we know that 
And we can use the result from part B to solve for K like this:
