Answer:
Explanation:
Using the principle of moment, assuming the rod is uniform rod of mass 1 kg
the center of mass of the rod will be at 1 m
assuming the system is in equilibrium,
clockwise moment = anticlockwise moment
let the distance of the man shoulder be x from the center of gravity and also is the pivot point
total mass of bucket + mass of honey = 2kg + 3 kg = 5 kg for rear bucket and
2kg + 5 kg = 7 kg for front bucket
( 5kg × ( 1+x)) + ( 1 kg × x) = 7 kg × ( 1 - x)
5 + 5 x + x = 7 - 7x
5 + 6x = 7 - 7x
6x + 7x = 7 - 5
13x = 2
x = 2 / 13 = 0.154 m
the honeybucket man's shoulder is 0.154 m from the center of the pole ( forward ).
The distance D where the object comes to rest is 1.08.m.
<h3>What is the distance?</h3>
- The separation of one thing from another in space; the distance or separation in space between two objects, points, lines, etc.; remoteness. The distance of seven miles cannot be accomplished in one hour of walking.
- Learn how to use the Pythagorean theorem to get the separation between two points using the distance formula. The Pythagorean theorem can be rewritten as d==(((x 2-x 1)2+(y 2-y 1)2)
- The distance between any two places is the length of the line segment separating them. By measuring the length of the line segment that connects the two points in coordinate geometry, the distance between them may be calculated.
(c) the distance D where the object comes to rest.
ΔKE ⇒ -0.25*1*9.8*D = 0-1/2*1*
⇒
⇒1.08.m
To learn more about distance, refer to:
brainly.com/question/4998732
#SPJ4
Force = mass x acceleration
Force = 4kg x 10m/s^2
Force = 40N
Answer:
all of the above
Explanation:
- a build up of electric charge
- the force and motion of electrically charged particles
- an electric current
are three different ways to describe electricity.
So the answer is all of the above.
Answer:
17.1
Explanation:
The distance ahead, of the deer when it is sighted by the park ranger, d = 20 m
The initial speed with which the ranger was driving, u = 11.4 m/s
The acceleration rate with which the ranger slows down, a = (-)3.80 m/s² (For a vehicle slowing down, the acceleration is negative)
The distance required for the ranger to come to rest, s = Required
The kinematic equation of motion that can be used to find the distance the ranger's vehicle travels before coming to rest (the distance 's'), is given as follows;
v² = u² + 2·a·s
∴ s = (v² - u²)/(2·a)
Where;
v = The final velocity = 0 m/s (the vehicle comes to rest (stops))
Plugging in the values for 'v', 'u', and 'a', gives;
s = (0² - 11.4²)/(2 × -3.8) = 17.1
The distance the required for the ranger's vehicle to com to rest, s = 17.1 (meters).