To allow for equations and problems in chemistry to be as precise as possible. When experiments are conducted, and even if the number is the slightest bit off, the problem or experiment could be impacted very negatively. It allows for complete accuracy to ensure nothing goes wrong, since chemistry is very touchy and risky when dealing with extremely unsafe elements.
Answer:
B. 1.65 L
Explanation:
Step 1: Write the balanced equation
2 SO₂(g) + O₂(g) ⇒ 2 SO₃(g)
Step 2: Calculate the moles of SO₂
The pressure of the gas is 1.20 atm and the temperature 25 °C (298 K). We can calculate the moles using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.20 atm × 1.50 L / (0.0821 atm.L/mol.K) × 298 K = 0.0736 mol
Step 3: Calculate the moles of SO₃ produced
0.0736 mol SO₂ × 2 mol SO₃/2 mol SO₂ = 0.0736 mol SO₃
Step 4: Calculate the volume occupied by 0.0736 moles of SO₃ at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
0.0736 mol × 22.4 L/1 mol = 1.65 L
Answer:
A. electromagnetic energy.
B. thermal energy.
C. solar energy.
D. mechanical energy.
Explanation:
Answer:
2nd one down
Explanation: distance divided by time interval