Answer:
The correct answer is - 2.557 KJ
Explanation:
In this case, Hg is melting, the process is endothermic, so the energy change will have a positive sign.
we can calculate this energy by the following formula:
Q = met
where, m = mass,
e = specific heat
t = temperature
then,
Q = 78*0.14* (273-38.8)
here 0.14 = C(Hg)
= 2.557 Kj
CU is the element symbol for Copper.
It's "C" a sample of dust particles at 0 Pascals
Answer:
0.0164 g
Explanation:
Let's consider the reduction of silver (I) to silver that occurs in the cathode during the electroplating.
Ag⁺(aq) + 1 e⁻ → Ag(s)
We can establish the following relations.
- 1 A = 1 C/s
- The charge of 1 mole of electrons is 96,468 C (Faraday's constant)
- 1 mole of Ag(s) is deposited when 1 mole of electrons circulate.
- The molar mass of silver is 107.87 g/mol
The mass of silver deposited when a current of 0.770 A circulates during 19.0 seconds is:

Explanation:
As density is defined as the mass of a substance divided by its volume.
Mathematically, Density = 
It is given that mass is 50 g and density is 0.934
.
Hence, calculate the volume of methyl acetate as follows.
Density = 
0.934
= 
Volume = 
or, =
(as 1
= 1 mL)
Thus, we can conclude that the volume of methyl acetate the student should pour out is
.