Answer:
95% two-sided confidence interval on the true mean breaking strength is (94.8cm, 99.2cm)
Step-by-step explanation:
Our sample size is 11.
The first step to solve this problem is finding our degrees of freedom, that is, the sample size subtracted by 1. So
.
Then, we need to subtract one by the confidence level
and divide by 2. So:

Now, we need our answers from both steps above to find a value T in the t-distribution table. So, with 10 and 0.025 in the two-sided t-distribution table, we have 
Now, we find the standard deviation of the sample. This is the division of the standard deviation by the square root of the sample size. So

Now, we multiply T and s
cm
For the upper end of the interval, we add the sample mean and M. So the upper end of the interval here is
cm
So
95% two-sided confidence interval on the true mean breaking strength is (94.8cm, 99.2cm).
Answer: The answer is (B) ∠SYD.
Step-by-step explanation: As mentioned in the question, two parallel lines PQ and RS are drawn in the attached figure. The transversal CD cut the lines PQ and RS at the points X and Y respectively.
We are given four angles, out of which one should be chosen which is congruent to ∠CXP.
The angles lying on opposite sides of the transversal and outside the two parallel lines are called alternate exterior angles.
For example, in the figure attached, ∠CXP, ∠SYD and ∠CXQ, ∠RYD are pairs of alternate exterior angles.
Now, the theorem of alternate exterior angles states that if the two lines are parallel having a transversal, then alternate exterior angles are congruent to each other.
Thus, we have
∠CXP ≅ ∠SYD.
So, option (B) is correct.
Answer:
518
Step-by-step explanation:
P = 2
Q = 8
p3 + 64q
Multiply "p" (which is 2) with 3
Multiply "q" (which is 8) with 8
Add the two numbers you get
And you have you answer
I hope this helps. :)
Answer : 12.4 +b
It said the longest is two times bigger then the smallest and the longest is 6.2 and thats double
I can only see half of the question.