Answer:
See explanation below
Explanation:
In this case we have reaction of addition. In this case a diene reacting with an acid as HBr. This reaction is known as Hydrohalogenation, and, as we have a diene, this kind of reaction can be done as 1,4 addition. Which means that the reaction will be undergoing with an adition in the carbon 1, and carbon 4.
At room temperature we can expect that this reaction can be done in thermodynamic conditions, Now, as the problem states that is forming 4 products, we can expect products of a 1,2 addition too. This product can be formed if the reaction is taking place in the most stable carbocation, and then, by resonance, we can expect the 1,4 product too.
Now, the HBr can be attacked by the double bond of the first position, giving two possible products or by the double bond of the third position giving the other two products. These products are all possible, obviously the most stable will be the major of all of them, but the other three are perfectly possible. One product is formed without doing much, and the other by resonance. Same happens with the other double bond.
In the picture below, you have the mechanism for all the 4 products.
Hope this helps
Answer:
Option (2)
Explanation:
Cohesion is usually defined as the contrasting property by which the water molecules are attached to one another, and adhesion is the property by which the molecular substances are linked to the molecules of other substances.
Since, the water molecules are able to form inter-molecular hydrogen bonding, so they are comprised of strong cohesive force.
And, as the water molecules are able to stick to the walls of the container, so they tend to show more of the properties for adhesion.
Thus, according to the given condition, water molecules are sticking to other substances and this is the property of adhesion.
Hence, the correct answer is option (2).
Strong internolecurar forces (A) hope it helps
Answer:
A. Coefficients
Explanation:
that's the number in front of the molecules