Answer:
ΔP = 14.5 Ns
I = 14.5 Ns
ΔF = 5.8 x 10³ N = 5.8 KN
Explanation:
The mass of the ball is given as 0.145 kg in the complete question. So, the change in momentum will be:
ΔP = mv₂ - mv₁
ΔP = m(v₂ - v₁)
where,
ΔP = Change in Momentum = ?
m = mass of ball = 0.145 kg
v₂ = velocity of batted ball = 55.5 m/s
v₁ = velocity of pitched ball = - 44.5 m/s (due to opposite direction)
Therefore,
ΔP = (0.145 kg)(55.5 m/s + 44.5 m/s)
<u>ΔP = 14.5 Ns</u>
The impulse applied to a body is equal to the change in its momentum. Therefore,
Impulse = I = ΔP
<u>I = 14.5 Ns</u>
the average force can be found as:
I = ΔF*t
ΔF = I/t
where,
ΔF = Average Force = ?
t = time of contact = 2.5 ms = 2.5 x 10⁻³ s
Therefore,
ΔF = 14.5 N.s/(2.5 x 10⁻³ s)
<u>ΔF = 5.8 x 10³ N = 5.8 KN</u>
The 61.0 kg object<span> ... F = (300kg)(6.673×10−11 </span>N m<span>^2 </span>kg<span>^−2)(61kg)/(.225m)^2. F = 2.412e-5 </span>N<span> towards the 495 </span>kg<span> block. </span>b. [195kg] ===.45m ... (b<span>) You cannot achieve this </span>position<span>. For the </span>net force<span> to become zero, one or both of the </span>masses<span> must ...</span>
The power delivered is equal to the product between the voltage V and the current I:

This power is delivered for a total time of

, so the total energy delivered to the battery is