By looking at the acceleration of the object.
In fact, Netwon's second law states that the resultant of the forces acting on an object is equal to the product between the mass m of the object and its acceleration:

So, when static friction is acting on the object, if the object is still not moving we know that all the forces are balanced: in fact, since the object is stationary, its acceleration is zero, and so the resultant of the forces (left term in the formula) must be zero as well (i.e. the forces are balanced).
Answer:
oxygen
Explanation:
as it is in the air it can't be depleted or used up
Answer:
it will be d) 14.4W
Explanation:
potential difference (v) = 12 volts
resistance (r) = 10 ohms
now, we know
=》

=》

=》

=》

There are approximately two hundred and twenty-five point seven five calories from using 945 j of heat
A: 225.75
Answer:
The tension in the string is 16.24 N
Explanation:
Given;
mass of the sphere, m = 1.55 kg
initial velocity of the sphere, u = 2.81 m/s
final velocity of the sphere, v = 4.60 m/s
duration of change in the velocity, Δt = 2.64 s
The tension of the string is calculated as follows;

T = 1.55(0.678 + 9.8)
T = 1.55(10.478)
T = 16.24 N
Therefore, the tension in the string is 16.24 N