1) When you look toward the Galactic Center with your eye, you see a long, thin strip. This suggests a disk seen edge-on, rather than a ellipsoid or another shape. We can also detect the bulge at the center. Since we see spiral galaxies which are disks with central bulges, this is a bit of a top.
Answer:
The lines of the magnetic field from a bar magnet form closed lines. By convention, the field direction is taken to be outward from the North pole and into the South pole of the magnet. Permanent magnets can be made from ferromagnetic materials.
As can be visualized with the magnetic field lines, the magnetic field is strongest inside the magnetic material. The strongest external magnetic fields are near the poles. A magnetic north pole will attract the south pole of another magnet, and repel a north pole.
The answer is that they are altogether different. In a colloid, there is no necessity that the scattered gold be as disengaged iotas. Colloidal gold is as nanoparticles, each having numerous iotas of gold. Note that gold is normally monoatomic, and does not tie to itself synthetically, not at all like oxygen, which ties in sets to accomplish lively soundness.
The increase in temperature of the metal hammer is 0.028 ⁰C.
The given parameters:
- <em>mass of the metal hammer, m = 1.0 kg</em>
- <em>speed of the hammer, v = 5.0 m/s</em>
- <em>specific heat capacity of iron, 450 J/kg⁰C</em>
The increase in temperature of the metal hammer is calculated as follows;

where;
<em>c is the </em><em>specific heat capacity</em><em> of the metal hammer</em>
<em />
Assuming the metal hammer is iron, c = 450 J/kg⁰C

Thus, the increase in temperature of the metal hammer is 0.028 ⁰C.
Learn more about heat capacity here: brainly.com/question/16559442