Answer:
I hope following attachment will help you a lot!
Explanation:
Answer:
The required wall thickness is
m
Explanation:
Given:
Fluid density

Diameter of tank
m
Length of tank
m
F.S = 4
For A-36 steel yield stress
MPa,
Allowable stress 
MPa
Pressure force is given by,


Pa
Now for a vertical pipe,

Where
required thickness


m
Therefore, the required wall thickness is
m
Answer:
Explanation:
For automobile emission, a uniform standard is preferred, because no unnecessary advantage is given by it to any company that is located in particular states where the regional standards are less severe.
Since pollution has its impact across the states and in the whole of the USA, then there should be uniform standards across all the states. It will also invalidate the impact of regional standards as a factor in the selection of plant locations for the automobile company. It means that a state offering less valid emission standards, will attract more companies to herself and it will be against the other states who care more about the natural environment. It can make more states to opt for the permissive emission standards, that will be more harmful to the USA as a country, than the good. So, a uniform standard is preferred to eliminate it as a factor in plant location decisions.
Yes, uniform standards are beneficial to everyone, because it will bring effective control upon the pollution level because there will be no state where the culprit firm can hide. Besides, it is more effective as efforts done towards environment conservation.
The working principle of a DC machine is when electric current flows through a coil within a magnetic field, and then the magnetic force generates a torque that rotates the dc motor. The DC machines are classified into two types such as DC generator as well as DC motor.
Answer: 24 pA
Explanation:
As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.
Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵ Ω cm.
The resistance R of a given resistor, is expressed by the following formula:
R = ρ L / A
Replacing by the values for resistivity, L and A, we have
R = 2.1. 10⁵ Ω cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2
R = 2.1. 10¹¹ Ω
Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:
I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA