I say the answers is A but if you mean ventilation in the area of the room then answer B
Answer:
a) 23.551 hp
b) 516.89 hp
Explanation:
<u>given:</u>

<u>required:</u>
the power in hp
<u>solution:</u>
.............(1)
by substituting in the equation (1)
=353.27 lbf
..........(2)
by substituting in the equation (2)
= 2769.29 lbf
power is defined by
P=F.V
353.27*36.67
=12954.411 lbf.ft/s
=12954.411*.001818
=23.551 hp
2769.29*102.67
= 284323 lbf.ft/s
= 284323*.001818
= 516.89 hp
Answer:
Hello your question has some missing information below are the missing information
The refrigerant enters the compressor as saturated vapor at 140kPa Determine The coefficient of performance of this heat pump
answer : 2.49
Explanation:
For vapor-compression refrigeration cycle
P1 = P4 ; P1 = 140 kPa
P2( pressure at inlet ) = P3 ( pressure at outlet ) ; P2 = 800 kPa
<u>From pressure table of R 134a refrigerant</u>
h1 ( enthalpy of saturated vapor at 140kPa ) = 239.16 kJ/kg
h2 ( enthalpy of saturated liquid at P2 = 800 kPa and t = 60°C )
= 296.8kJ/kg
h3 ( enthalpy of saturated liquid at P3 = 800 kPa ) = 95.47 kJ/kg
also h4 = 95.47 kJ/kg
To determine the coefficient of performance
Cop = ( h1 - h4 ) / ( h2 - h1 )
∴ Cop = 2.49
Answer:
To prepare and issue notices and agendas of all meetings in consultation with the chairman, and to ensure that any background papers are available well before the meeting. To attend and take the minutes of every committee meeting. To circulate minutes to all committee members, and to conduct the correspondence
Explanation:
I think you want to say roles.
Answer:
a)
, b) 
Explanation:
a) The coefficient of performance of a reversible refrigeration cycle is:

Temperatures must be written on absolute scales (Kelvin for SI units, Rankine for Imperial units)


b) The respective coefficient of performance is determined:



But:

The temperature at hot reservoir is found with some algebraic help:




