1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
9

Fatigue failure occurs under the condition of (a) High elastic stress (b) High corrosivity (c) High stress fluctuations (d) High

temperature (e) High rate of loading
Engineering
1 answer:
Harlamova29_29 [7]3 years ago
8 0

Answer:

Fatigue occurs under conditions of high elastic stress, high stress fluctuations and high rate of loading

Explanation:

 According to many definition of fatigue failure the fatigue occurs when in an especifyc point of the object there is involved many forces and tensions.

 That tensions needs to be big in magnitud, de variations of the efforts it has to be with a lot of amplitude and the loading in the object it has to be with a lot of number of cycles.

 If in the all of these three conditions are present the fatigue failure it would appear.

You might be interested in
A combinational switching circuit has four inputs (A, B, C, D) and one output (F).
DochEvi [55]

Answer:

The answer of the above question include complicated equations and Diagrams.It is difficult to write it there. You can find the answers in deatailed way in the attached files.

Explanation:

7 0
3 years ago
Could I please get help with this​
alex41 [277]

Answer:

1.I_{xc} = 7.161458\overline 3 in.⁴

I_{yc} = 36.661458\overline 3 in.⁴

Iₓ = 28.6458\overline 3 in.⁴

I_y = 138.6548\overline 3 in.⁴

2. I_{xc} = 114.\overline 3 in.⁴

I_{yc} = 37.\overline 3 in.⁴

Iₓ = 457.\overline 3 in.⁴

I_y = 149.\overline 3 in.⁴

3. The maximum deflection of the beam is 2.55552 inches

Explanation:

1. The height of the beam having a rectangular cross section is h = 2.5 in.

The breadth of the beam, is = 5.5 in.

The moment of inertia of a rectangular beam through its centroid is given as follows;

I_{xc} = b·h³/12 = 5.5 × 2.5³/12 = 1375/192 = 7.161458\overline 3

I_{xc} = 7.161458\overline 3 in.⁴

I_{yc} = h·b³/12 = 2.5 × 5.5³/12 = 6655/192 = 36.661458\overline 3

I_{yc} = 36.661458\overline 3 in.⁴

The moment of inertia about the base is given as follows;

Iₓ = b·h³/3 = 5.5 × 2.5³/3 = 625/24 = 28.6458\overline 3

Iₓ = 28.6458\overline 3 in.⁴

I_y = h·b³/3 = 2.5 × 5.5³/3 = 6655/48= 138.6548\overline 3

I_y = 138.6548\overline 3 in.⁴

2. The height of the beam having a rectangular cross section is h = 7 in.

The breadth of the beam, b = 4 in.

The moment of inertia of a rectangular beam through its centroid is given as follows;

I_{xc} = b·h³/12 = 4 × 7³/12 = 114.\overline 3

I_{xc} = 114.\overline 3 in.⁴

I_{yc} = h·b³/12 = 7 × 4³/12 = 37.\overline 3

I_{yc} = 37.\overline 3 in.⁴

The moment of inertia about the base is given as follows;

Iₓ = b·h³/3 = 4 × 7³/3 = 457.\overline 3

Iₓ = 457.\overline 3 in.⁴

I_y = h·b³/3 = 2.5 × 5.5³/3 = 149.\overline 3

I_y = 149.\overline 3 in.⁴

3. The deflection, \delta _{max}, of a simply supported beam having a point load at the center is given as follows;

\delta_{max} = \dfrac{W \times L^3}{48 \times E \times I}

The given parameters of the beam are;

The length of the beam, L = 22 ft. = 264 in.

The applied load at the center, W = 750 lbs

The modulus of elasticity for Cedar = 10,000,000 psi

The height of the wood, h = 3 in.

The breadth of the wood, b = 5 in.

The moment of inertia of the wood, I_{xc} = b·h³/12 = 5 × 3³/12 = 11.25 in.⁴

By plugging in the given values, we have;

\delta_{max} = \dfrac{750 \times 264^3}{48 \times 10,000,000 \times 11.25} = 2.55552

The maximum deflection of the beam, \delta _{max} = 2.55552 inches

5 0
3 years ago
Suppose the Bookstore is processing an input file containing the titles of books in order to remove duplicates from their list.
mash [69]

Answer:

books = []

   fp = open("bookTitles.txt")

   for line in fp.readlines():

       title = line.strip()

       if title not in books:

           books.append(title)

   fp.close()

   fout = open("noDuplicates.txt", "w")

   for title in books:

       print(tile, file=fout)

   fout.close()

except FileNotFoundError:

   print("Unable to open bookTitles.txt")

6 0
3 years ago
A horizontal 2-m-diameter conduit is half filled with a liquid (SG=1.6 ) and is capped at both ends with plane vertical surfaces
luda_lava [24]

Answer:

Resultant force = 639 kN and it acts at 0.99m from the bottom of the conduit

Explanation:

The pressure is given as 200 KPa and the specific gravity of the liquid is 1.6.

The resultant force acting on the vertical plate, Ft, is equivalent to the sum of the resultant force as a result of pressurized air and resultant force due to oil, which will be taken as F1 and F2 respectively.

Therefore,

Ft = F1 + F2

According to Pascal's law which states that a change in pressure at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere, the air pressure will act on the whole cap surface.

To get F1,

F1 = p x A

= p x (πr²)

Substituting values,

F1 = 200 x π x 1²

F1 = 628.32 kN

This resultant force acts at the center of the plate.

To get F2,

F2 = Π x hc x A

F2 = Π x (4r/3π) x (πr²/2)

Π - weight density of oil,

A - area on which oil pressure is acting,

hc - the distance between the axis of the conduit and the centroid of the semicircular area

Π = Specific gravity x 9.81 x 1000

Therefore

F2 = 1.6 x 9.81 x 1000 x (4(1)/3π) x (π(1)²/2)

F2 = 10.464 kN

Ft = F1 + F2

Ft = 628.32 + 10.464

Ft = 638.784 kN

The resultant force on the surface is 639 kN

Taking moments of the forces F1 and F2 about the centre,

Mo = Ft x y

Ft x y = (F1 x r) + F2(1 - 4r/3π)

Making y the subject,

y = (628.32 + 10.464(1 - 4/3π)/ 638.784

y = 0.993m

7 0
3 years ago
What are factor of safety for brittle and ductile material
galben [10]

Explanation:

Step1

Factor of safety is the number that is taken for the safe design of any component. It is the ratio of failure stress to the maximum allowable stress for the material.

Step2

It is an important parameter for design of any component. This factor of safety is taken according to the environment condition, type of material, strength, type of component etc.

Step3

Different material has different failure stress. So, ductile material fails under shear force. Ductile material’s FOS is based on yield stress as failure stress as after yield point ductile material tends to yield. Brittle material’s FOS is based on ultimate stress as failure stress.

The expression for factor of safety for ductile material is given as follows:

FOS=\frac{\sigma_{yp}}{\sigma_{a}}

Here,\sigma_{f} is yield stress and \sigma_{a} is allowable stress.

The expression for factor of safety for brittle material is given as follows:

FOS=\frac{\sigma_{ut}}{\sigma_{a}}

Here,\sigma_{ut} is ultimate stress and \sigma_{a} is allowable stress.

5 0
3 years ago
Other questions:
  • a. To measure the water current in an ocean, a marker is dropped onto it. Determine if the trajectory traced by the drifting mar
    5·1 answer
  • Which energy source would you rank as the best option for the rescue team? Why?
    9·1 answer
  • Shear plane angle and shear strain: In an orthogonal cutting operation, the tool has a rake angle = 16°. The chip thickness befo
    7·1 answer
  • Is cross flow more efficient or counter flow
    13·1 answer
  • The following passage contains a fragment. Select the correct revision. Presley took the exuberance of gospel and added the freq
    7·1 answer
  • Why might many general contractors begin their careers as construction workers?
    9·1 answer
  • Help please!!!!!
    12·1 answer
  • scrapers are used to haul dirt from a borrow pit to the cap of a landfill. the estimated cycle time for the scrapers is 9.5 minu
    14·1 answer
  • What happens if you leave your car on while pumping gas
    8·1 answer
  • thanh thẳng AD có kích thước và chịu lực như hình.biết P1 = 10kn, p2=5kn,M=15kn*m,a=2m.Hãy xách định phản lực liên kết tại A,b
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!