1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ella [17]
3 years ago
7

Rolling and Shearing are the types of a)-Bulk Deformation Process b)- Sheet Metal Process c)- Machining Process d)- Both a &

c d)- None of them
Engineering
1 answer:
Margarita [4]3 years ago
5 0

Answer:

a)Bulk deformation process  

Explanation:

<u>Rolling</u>

Rolling is a metal forming process.In rolling work piece passes through two moving rollers and get compressed.in rolling thickness of work piece will reduces and length of work piece will increase for maintaining the constant area.Due to compression bulk deformation takes place.

<u>Shearing</u>

In shearing one surface slides on another surface and deformation take place.shearing is a machining process.This is also a bilk motion deformation process.

So from above we can say that option a is right.

You might be interested in
How large a force is required to accelerate a 1300 kg car from rest to a speed of 20 m/s in a distance of 80 m?
topjm [15]

F=m*a

F=80*20

F =1600 ans"

7 0
3 years ago
Read 2 more answers
The maximum stress that a bar will withstand before failing is called • Rapture Strength • Yield Strength • Tensile Strength • B
konstantin123 [22]

Answer: Rupture strength

Explanation: Rupture strength is the strength of a material that is bearable till the point before the breakage by the tensile strength applied on it. This term is mentioned when there is a sort of deformation in the material due to tension.So, rupture will occur before whenever there are chances of failing and the material is still able to bear stresses before failing.  

7 0
3 years ago
Problem 34.3 The elevation of the end of the steel beam supported by a concrete floor is adjusted by means of the steel wedges E
Natasha2012 [34]

The image is missing, so i have attached it.

Answer:

A) P = 65.11 KN

B) Q = 30 KN

Explanation:

We are given;

The end reaction of the beam; F = 100KN

Coefficient of static friction between two steel surfaces;μ_ss = 0.3

Coefficient of static friction between steel and concrete;μ_sc = 0.6

So, F1 = μ_ss•F =0.3 x 100 = 30 KN

F2 = μ_ss•N_EF = 0.3N_EF

From the screen shot, we see that the angle is 12°

Sum of forces in the Y-direction gives;

F2•sin12 - N_EF•cos12 + 100 = 0

Rearranging gives;

N_EF•cos12 - F2•sin12 = 100

Let's put 0.3N_EF for F2 to give;

N_EF•cos12 - 0.3N_EF•sin12 = 100

Thus;

N_EF(0.9158) - 0.1247 = 100

N_EF(0.9781) = 100 + 0.1247

N_EF = 100.1247/0.9158

N_EF = 109.33 KN

Thus, F2 = 0.3N_EF = 0.3 x 109.33 = 32.8 KN

Wedge will move if;

P = (F1 + F2cos12 + N_EFsin12)

Thus;

P = 10 + (32.8 x 0.9781) + (109.33 x 0.2079)

P ≥ 65.11 KN

B) For static equilibrium, Q = F1

Thus, Q = 30 KN

3 0
3 years ago
Two dogbone specimens of identical geometry but made of two different materials: steel and aluminum are tested under tension at
makkiz [27]

Answer:

\dot L_{steel} = 3.448\times 10^{-4}\,\frac{in}{min}

Explanation:

The Young's module is:

E = \frac{\sigma}{\frac{\Delta L}{L_{o}} }

E = \frac{\sigma\cdot L_{o}}{\dot L \cdot \Delta t}

Let assume that both specimens have the same geometry and load rate. Then:

E_{aluminium} \cdot \dot L_{aluminium} = E_{steel} \cdot \dot L_{steel}

The displacement rate for steel is:

\dot L_{steel} = \frac{E_{aluminium}}{E_{steel}}\cdot \dot L_{aluminium}

\dot L_{steel} = \left(\frac{10000\,ksi}{29000\,ksi}\right)\cdot (0.001\,\frac{in}{min} )

\dot L_{steel} = 3.448\times 10^{-4}\,\frac{in}{min}

7 0
3 years ago
Read 2 more answers
Kerosene flows through 3/4 standard type K drawn copper tube. The pressure drop measured at two points 50 m apart is 130 kPa. De
Anettt [7]

Answer:

Q=4.98\times 10^{-3}\ m^3/s

Explanation:

Given that

L= 50 m

Pressure drop = 130 KPa

For Copper tube is 3/4 standard type K drawn tube

Outside diameter=22.22 mm

Inside diameter=18.92 mm

Dynamic viscosity for kerosene

\mu =0.00164\ Pa.s

Pressure difference given as

\Delta P=\dfrac{128\mu QL}{\pi d_i^4}

Where

L is length of tube

μ is dynamic viscosity

Q is volume flow rate

d is inner diameter of tube

ΔP is pressure drop

Now by putting the values

\Delta P=\dfrac{128\mu QL}{\pi d_i^4}

130\times 1000=\dfrac{128\times 0.00164\times 50\times Q}{\pi\times 0.0189^4}

Q=4.98\times 10^{-3}\ m^3/s

So flow rate is Q=4.98\times 10^{-3}\ m^3/s

7 0
3 years ago
Other questions:
  • Two advantages of deforming steel at room temperature rather than at elevated temperatures are: (select 2 answers from the optio
    13·1 answer
  • A tank with a volume of 8 m3 containing 4 m3 of 20% (by volume) NaOH solution is to be purged by adding pure water at a rate of
    8·1 answer
  • Assume that we have a BS with a 6-dB antenna gain and an MS with antenna gain of 2 dB, at heights 10 m and 1.5 m, respectively,
    5·1 answer
  • Compute the electrical resistivity of a cylindrical silicon specimen 7.0 mm (0.28 in.) diameter and 57 mm (2.25 in.) in length i
    9·1 answer
  • During a long run a very well-trained dog can use up to 1000 ‘cal’/hour (Note: Food calories differ by a factor of one thousand
    14·1 answer
  • 7. A single-pole GFCI breaker is rated at
    9·1 answer
  • Two engineers are discussing the various merits of hydroelectricity. Engineer A says that tidal barrage systems can generate ele
    6·1 answer
  • Introduction for site visit​
    13·1 answer
  • What is considered the greatest engineering achievement of the 20th century?
    10·1 answer
  • 3. Which instrument measures the height above the ground?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!