1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
3 years ago
15

What was the most important thing you learned this school year in your engineering class and why did you choose this thing

Engineering
1 answer:
fredd [130]3 years ago
6 0

Answer:

I don't know

I am not even in engineering class and I didn't choose it

You might be interested in
If the efficiency of the boiler is 91.2 % , the overall efficiency of the turbine, which includes the Carnot efficiency and its
Tju [1.3M]

Answer:

Net efficiency of generating unit = 42.08 - 5 = 37.08 %

Explanation:

We have given that efficiency of the boiler = 91.2 % = 0.912

Carnot efficiency = 46.9 % = 0.469

Efficiency of generator = 98.4% =0.984

We have to find the efficiency of total generating unit

For finding the efficiency of total generating unit we have to multiply all the efficiencies

So efficiency of generating unit = 0.912×0.469×0.984 = 0.4208 = 42.08 %

For plant losses we have to subtract 5%

So net efficiency of generating unit = 42.08 - 5 = 37.08 %

4 0
3 years ago
A turbojet aircraft flies with a velocity of 800 ft/s at an altitude where the air is at 10 psia and 20 F. The compressor has a
nika2105 [10]

Answer:

Pressure = 115.6 psia

Explanation:

Given:

v=800ft/s

Air temperature = 10 psia

Air pressure = 20F

Compression pressure ratio = 8

temperature at turbine inlet = 2200F

Conversion:

1 Btu =775.5 ft lbf, g_{c} = 32.2 lbm.ft/lbf.s², 1Btu/lbm=25037ft²/s²

Air standard assumptions:

c_{p}= 0.0240Btu/lbm.°R, R = 53.34ft.lbf/lbm.°R = 1717.5ft²/s².°R 0.0686Btu/lbm.°R

k= 1.4

Energy balance:

h_{1} + \frac{v_{1} ^{2} }{2} = h_{a} + \frac{v_{a} ^{2} }{2}\\

As enthalpy exerts more influence than the kinetic energy inside the engine, kinetic energy of the fluid inside the engine is negligible

hence v_{a} ^{2} = 0

h_{1} + \frac{v_{1} ^{2} }{2} = h_{a} \\h_{1} -h_{a} = - \frac{v_{1} ^{2} }{2} \\ c_{p} (T_{1} -T_{a})= - \frac{v_{1} ^{2} }{2} \\(T_{1} -T_{a}) = - \frac{v_{1} ^{2} }{2c_{p} }\\ T_{a}=T_{1} +  \frac{v_{1} ^{2} }{2c_{p} }

T_{1} = 20+460 = 480°R

T_{a}  =480+  \frac{(800)(800}{2(0.240)(25037}= 533.25°R

Pressure at the inlet of compressor at isentropic condition

P_{a } =P_{1}(\frac{T_{a} }{T_{1} }) ^{k/(k-1)}

P_{a} = (10)(\frac{533.25}{480}) ^{1.4/(1.4-1)}= 14.45 psia

P_{2}= 8P_{a} = 8(14.45) = 115.6 psia

4 0
3 years ago
Read 2 more answers
The air in a room has a pressure of 1 atm, a dry-bulb temperature of 24C, and a wet-bulb temperature of 17C. Using the psychrome
TEA [102]

Answer:

(a) Relative Humidity = 48%,

Specific humidity = 0.0095

(b) Enthalpy = 65 KJ/Kg of dry sir

Specific volume = 0.86 m^3/Kg of dry air

(c/d) 12.78 degree C

(e) Specific volume = 0.86 m^3/Kg of dry air

8 0
3 years ago
A reservoir delivers water to a horizontal pipeline 39 long The first 15 m has a diameter of 50 mm, after which it suddenly beco
allsm [11]

Answer:

The difference of head in the level of reservoir is 0.23 m.

Explanation:

For pipe 1

d_1=50 mm,f_1=0.0048

For pipe 2

d_2=75 mm,f_2=0.0058

Q=2.8 l/s

Q=2.8\times 10^{-3]

We know that Q=AV

Q=A_1V_1=A_2V_2

A_1=1.95\times 10^{-3}m^2

A_2=4.38\times 10^{-3} m^2

So V_2=0.63 m/s,V_1=1.43 m/s

head loss (h)

h=\dfrac{f_1L_1V_1^2}{2gd_1}+\dfrac{f_2L_2V_2^2}{2gd_2}+0.5\dfrac{V_1^2}{2g}

Now putting the all values

h=\dfrac{0.0048\times 15\times 1.43^2}{2\times 9.81\times 0.05}+\dfrac{0.0058\times 24\times 0.63^2}{2\times 9.81\times 0.075}+0.5\dfrac{1.43^2}{2\times 9.81}

So h=0.23 m

So the difference of head in the level of reservoir is 0.23 m.

8 0
3 years ago
During January, at a location in Alaska winds at -20°C can be observed, However, several meters below ground the temperature rem
maw [93]

Answer:

a) \eta_{th} = 10.910\,\%, b) Yes.

Explanation:

a) The maximum thermal efficiency is given by the Carnot's Cycle, whose formula is:

\eta_{th} =\left(1-\frac{253.15\,K}{284.15\,K}  \right) \times 100\,\%

\eta_{th} = 10.910\,\%

b) The claim of the inventor is possible since real efficiency is lower than maximum thermal efficiency.

4 0
3 years ago
Other questions:
  • The heat flux through a 1-mm thick layer of skin is 1.05 x 104 W/m2. The temperature at the inside surface is 37°C and the tempe
    8·1 answer
  • write an interface downloadable that has a method "geturl" that returns the url of a downloadable object
    5·1 answer
  • // This program accepts data about 100 books and// determines a price for each.// The price is 10 cents per page for the// first
    12·1 answer
  • How do you connect several springs to increase the equivalent stiffness? What is one example from industry or other real-life si
    7·1 answer
  • ______________ help protect the lower legs and feet from heat hazards like molten metal and welding sparks. A) Safety shoesB) Le
    7·1 answer
  • A partnership between a gaming company and moviemakers might happen in what two ways?
    6·1 answer
  • PLEASE HELP ME RIGHT NOW!!
    11·1 answer
  • The build up of electrons will cause electrical called ?
    14·1 answer
  • A jackhammer uses pressurize gas to change it forced to the hammer what type of mechanical system is it a jackhammer it uses in
    5·1 answer
  • 6
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!