Mole is equal to 6.02*10^23 atoms, and you have 7.00*10^23 atoms
<span>Answer:
Nothing is balanced in your final equation: not H, not O, not Cr, not I and your charges aren't either.
Start with your 2 half reactions:
I- --> IO3-
Cr2O72- --> 2 Cr3+
Balance O by adding H2O:
I- + 3 H2O --> IO3-
Cr2O72- --> 2 Cr3+ + 7H2O
Balance H by adding H+:
I- + 3 H2O --> IO3- + 6 H+
Cr2O72- + 14 H+ --> 2 Cr3+ + 7H2O
Balance charge by adding e-:
I- + 3 H2O --> IO3- + 6 H+ + 6 e-
Cr2O72- + 14 H+ + 6 e- --> 2 Cr3+ + 7H2O
Since the numbers of electrons in your two half reactions are the same, just add them and simplify to give:
Cr2O72- + I- + 8 H+ --> IO3- + 2 Cr3+ + 4 H2O</span>
Answer:
The percent isotopic abundance of C- 12 is 98.93 %
The percent isotopic abundance of C- 13 is 1.07 %
Explanation:
we know there are two naturally occurring isotopes of carbon, C-12 (12u) and C-13 (13.003355)
First of all we will set the fraction for both isotopes
X for the isotopes having mass 13.003355
1-x for isotopes having mass 12
The average atomic mass of carbon is 12.0107
we will use the following equation,
13.003355x + 12 (1-x) = 12.0107
13.003355x + 12 - 12x = 12.0107
13.003355x- 12x = 12.0107 -12
1.003355x = 0.0107
x= 0.0107/1.003355
x= 0.0107
0.0107 × 100 = 1.07 %
1.07 % is abundance of C-13 because we solve the fraction x.
now we will calculate the abundance of C-12.
(1-x)
1-0.0107 =0.9893
0.9893 × 100= 98.93 %
98.93 % for C-12.