Answer:
1.65
Explanation:
The equation of the forces along the horizontal direction is:
(1)
where
F = 65 N is the force applied with the push
is the frictional force
m = 4 kg is the mass
is the acceleration
The force of friction can be written as
(2), where
is the coefficient of kinetic friction
R is the normal force exerted by the floor
The equation of forces along the vertical direction is
(3)
since the bookcase is in equilibrium. Substituting (2) and (3) into (1), we find

And solving for
,

Answer:
25/30 = 5/6 m/s^2 5/6 meters per second squared
Answer:

Explanation:
The formula for the force exerted between two charges is

where k is the Coulomb constant.
The charges are identical, so we can write the formula as


Well if you didn't you could make mistakes, which would lead ,in the best case, at a fail of the circuit , or if it goes out of control it could be dangerous
for example you have to know that the wires become hot and they loose their abbilitys as connecters(the hotter it will, the more energy you lose becouse the R will be bigger)
Answer:

Explanation:
As we know,
=》Force = Mass × Acceleration
=》45 N = 0.75 × Acceleration
=》Acceleration = 45 ÷ 0.75
=》Acceleration = 60
hence, the Acceleration of the ball would be. 60 meters per second square
