Answer:
Height of cliff = S = 20 m (Approx)
Explanation:
Given:
Initial velocity = 8 m/s
Distance s = 16 m
Starting acceleration (a) = 0
Computation:
s = ut + 1/2a(t)²
16 = 8t
t = 2 sec
Height of cliff = S
Gravitational acceleration = 10 m/s
S = 1/2a(t)²
S = 1/2(10)(2)²
Height of cliff = S = 20 m (Approx)
When light is reflected by a mirror, the angle of incidence is always <span>A. equal to the angle of reflection. We know this by the Law of Reflection.</span>
To find a general equilibrium point for a spring based on the hook law, it is possible to start from the following premise:
Hook's law is given by:

Where,
k= Spring Constant
Change in Length
F = Force
When there is a Mass we have two force acting at the System:
W= mg
Where W is the force product of the weigth. Then the force net can be defined as,

But we have a system in equilibrium, so

We find the equilibrium for any location when

Answer:
c. vf is greator than v2, but less than v1
Explanation:
The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.
In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.
Collisions in which the kinetic energy is conserved are called elastic collision.
Collisions in which the kinetic energy is not conserved are called inelastic collisions. If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.
<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>
Therefore,
a. vf = v2 is wrong because vf is greater than v2
b. vf is less than v2 is wrong because vf is greater than v2
c. vf is greater than v2, but less than v1 is correct.
d. vf = v1 is wrong because vf is less than v1