Answer:
The voltage across the resistor is zero, and the voltage across the capacitor is equal to the terminal voltage of the battery.
Explanation:
This is because when a capacitor is charged no current or voltage flows through it so it will have a voltage equal to the terminal voltage of the battery
According to Newton's Second Law of Motion :
The Force acting on an Object is equal to Product of Mass of the Object and Acceleration produced due to the Force.
Force acting = Mass of the Object × Acceleration
Given : Force = 50 newton and Mass of the Object = 10 kg
Substituting the respective values in the Formula, we get :
50 N = 10 kg × Acceleration

Acceleration of the Object = 5 m/s²
A) 50 cm
B) 10000 cm/s
Explanation
Step 1
A)
If you know the distance between nodes and antinodes then use this equation:

then, let

now, replace to find the wavelength

so, the wavelength is
A) 50 cm
Step 2
The speed of a wave can be found using the equation

or velocity = wavelength x frequency,
then,let

replace and evaluate

so
B) 10000 cm/s
I hope this helps you
The conclusion is, medium Q is most likely a solid because solids have the highest density and sound waves travel fastest in high density media.
<h3>
Effect of density on speed of sound</h3>
Sound wave is mechanical wave that requires material medium for its propagation.
A high dense medium, is a medium with closely packed molecules. Since sound wave requires material medium for its propagation, it will travel faster in a high dense medium than a less dense medium.
Thus, the speed of sound increases as the density of the medium increases.
<h3>Speed of sound in the different media</h3>
The conclusion that can be made from the speed of sound in the different media is "Medium Q is most likely a solid because solids have the highest density and sound waves travel fastest in high density media".
Learn more about effect of density on speed of sound here: brainly.com/question/3323620
Answer:
The force when θ = 33° is 1.7625 times of the force when θ = 18°
Explanation:
The force on a moving charge through a magnetic field is given by
F = qvB sin θ
q = charge of the moving particle
v = Velocity of the moving charge
B = Magnetic field strength
θ = angle between the magnetic field and the velocity (direction of the motion) of the moving charge
Because qvB are all constant, we can call the expression K.
F = K sinθ
when θ = 18°,
F = K sin 18° = 0.309K
when θ = 33°, let the force be F₁
F₁ = K sin 33° = 0.5446K
(F₁/F) = (0.5446K/0.309K) = 1.7625
F₁ = 1.7625 F
Hope this Helps!!!