Complete question:
while hunting in a cave a bat emits sounds wave of frequency 39 kilo hartz were moving towards a wall with a constant velocity of 8.32 meters per second take the speed of sound as 340 meters per second. calculate the frequency reflected off the wall to the bat?
Answer:
The frequency reflected by the stationary wall to the bat is 41 kHz
Explanation:
Given;
frequency emitted by the bat, = 39 kHz
velocity of the bat,
= 8.32 m/s
speed of sound in air, v = 340 m/s
The apparent frequency of sound striking the wall is calculated as;

The frequency reflected by the stationary wall to the bat is calculated as;


Answer:
(a) 11.66 square meters per liter
(b) 11657.8 per meters
(c) 0.00211 gal per square feet
Explanation:
(a) 475ft^2/gal = 475ft^2/gal × (1m/3.2808ft)^2 × 1gal/3.7854L = 11.66m^2/L
(b) 475ft^2/gal = 475ft^2/gal × (1m/3.2808ft)^2 × 264.17gal/1m^3 = 11657.8/m
(c) Inverse of 475ft^2/gal = 1/475ft^3/gal = 0.00211gal/ft^3
Answer:
Part a)

Part b)

Explanation:
As we know that magnetic flux through the loop is given as

now we have

now rate of change in flux is given as

now we know that



Now plug in all data


Part b)
Now the radius of the loop after t = 1 s



Now plug in data in above equation


By the definition of wavelength, the answer is the letter D, the wavelength would decrease.
We can see in the diagram a wave motion.
A wave has some characteristics:
- Has an amplitude, the distance from 0 to the crest (highest point in the y-direction, point (3) in the figure) it would see in the figure as (2)
- Has wavelength, the distance between the crests.
- Has a trough, the lowest point in the y-direction.
Now, if we increase the distance of the crests, by the definition shown above, we will increase the wavelength.
Therefore, the answer is letter D, the wavelength would increase.
You can learn more about wave motion here:
brainly.com/question/22763521