B) <span> It is practical because a top-loading machine uses much more water than a front-loading machine.
Front-loading washing machines are able to better conserve water by automatically maintaining the same water level throughout the wash, while top-loading washing machines generally begin the cycle by filling up the barrel to a certain point. </span>
Answer:

Explanation:
The system ball-pin is modelled by the Principle of Moment Conservation:

The velocity of the bowling ball after the collision is:

Answer:
63.57 kg
Explanation:
weight = 140 lbs
Let the mass is m.
1 lbs = 4.45 N
The weight of an object is defined as the force with which our earth attracts the body towards its centre.
Weight is the product of mass of the body and the acceleration due to gravity of that planet.
W = m x g
On earth surface g = 9.8 m/s^2
Now convert lbs in newton
So, 140 lbs = 140 x 4.45 = 623 N
So, m x 9.8 = 623
m = 63.57 kg
Thus, the mass is 63.57 kg.
Answer:
0.001 s
Explanation:
The force applied on an object is equal to the rate of change of momentum of the object:

where
F is the force applied
is the change in momentum
is the time interval
The change in momentum can be written as

where
m is the mass
v is the final velocity
u is the initial velocity
So the original equation can be written as

In this problem:
m = 5 kg is the mass of the fist
u = 9 m/s is the initial velocity
v = 0 is the final velocity
F = -45,000 N is the force applied (negative because its direction is opposite to the motion)
Therefore, we can re-arrange the equation to solve for the time:

It is a battery (the long and short lines represent 2 cells)