We shall consider two properties:
1. Temperature difference
2. Thermal conductivity of the material
Use a cylindrical rod of a given material (say steel) which is insulated around its circumference.
One end of the rod is dipped in a large reservoir of water at 100 deg.C and the other end is dipped in water (with known volume) at 40 deg. C. The cold water if stored in a cylinder which is insulated on all sides. A thermometer reads the temperature of the cold water as a function of time.
This experiment will show that
(a) heat flows from a region of high temperature to a region of lower temperature.
(b) The thermal energy of a body increases when heat is added to it, and its temperature will rise.
(c) The thermal conductivity of water determines how quickly its temperature will rise. If mercury replaces water in the cold cylinder, its temperature will rise at a different rate because its thermal conductivity is different.
I think this is the solution:
1: U-1, F,-4
2: Na-6, Mo-1, O-4
3: Bi-1, O-1, C-1, I-1
4: In-9, N-1
5: N-2, H-4, S-1, C-1
6: Ge- 15, N-4
7: N-1, H-4, C-1, I-1, O-3
8: H-7, F-1
9: N-1, O-5, H-1, S-1
10: H-8
11: Nb-1, O-1, C-1, I-3
12: C-3, F-3, S-1, O-3, H-1
13: Ag-1, C-1, N-1, O-1
14: Pb-6, H-1, As-1, O-4
Answer:
1. The sound waves are longitudinal because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves.
2. A pulse or a wave is introduced into a slinky when a person holds the first coil and gives it a back-and-forth motion. This creates a disturbance within the medium; this disturbance subsequently travels from coil to coil, transporting energy as it moves.
Explanation:
Explanation:
Gravitational potential energy
= mgh
= (2kg)(10N/kg)(5m)
= 100J.