Kinetic energy is the energy possessed by an object when that object is moving in space. The higher the mass of an object or higher the speed of an object the higher the kinetic energy will be.
So to calculate the Kinetic Energy we can use the following formula
K.E=(1/2)*m*v^2
Inserting the values in formula gives:
K.E=1/2*7.26*2^2
14.52J
This is the final answer which gives the kinetic energy of the ball.
Speed, being a scalar quantity, is the rate at which an object covers distance. The average speed is the distance (a scalar quantity) per time ratio. ... Velocity is the rate at which the position changes. The average velocity is the displacement or position change (a vector quantity) per time ratio.
Answer:
the final angular velocity of the platform with its load is 1.0356 rad/s
Explanation:
Given that;
mass of circular platform m = 97.1 kg
Initial angular velocity of platform ω₀ = 1.63 rad/s
mass of banana
= 8.97 kg
at distance r = 4/5 { radius of platform }
mass of monkey
= 22.1 kg
at edge = R
R = 1.73 m
now since there is No external Torque
Angular momentum will be conserved, so;
mR²/2 × ω₀ = [ mR²/2 +
(
R)² +
R² ]w
m/2 × ω₀ = [ m/2 +
(
)² +
]w
we substitute
w = 97.1/2 × 1.63 / ( 97.1/2 + 8.97(16/25) + 22.1
w = 48.55 × [ 1.63 / ( 48.55 + 5.7408 + 22.1 )
w = 48.55 × [ 1.63 / ( 76.3908 ) ]
w = 48.55 × 0.02133
w = 1.0356 rad/s
Therefore; the final angular velocity of the platform with its load is 1.0356 rad/s
Air can go in any direction. . .
A force can be considered a push or pull
hope this helps :)