Answer:
the product of mass and velocity
....in my syllabus
The correct answer to the question is : A) The velocity of the cart after it hits the wall.
EXPLANATION:
Before answering this question, first we have to understand impulse.
Impulse of a body is defined as the change in momentum or the product of force with time.
Mathematically impulse = m ( v- u ).
Here, v is the final momentum and u is the initial momentum.
Hence, we need the velocity of the cart after it hits the wall in order to calculate the impulse of the lab cart.
It works by you putting leverage on one side makes more force go to the other side so if you put a crowbar in between a door and you push on one side the other will push the opposite side with more force<span />
The redshift of distant galaxy are larger than those of closer galaxies, which indicates that the galaxy is receding at a faster rate.
- The Universe was 5 percent its current size when light left objects now at redshift of <u>19</u>.
Reasons:
The size of the universe represented as a scale factor with relation to the redshift can be presented as follows;

Where;
a₀ = The current size of the Universe
a = The size of the early Universe = 5% of a
Therefore;


0.05 + 0.05·z = 1

- The redshift is of the observed light is, z = <u>19</u>
Learn more here:
brainly.com/question/14459434
brainly.com/question/3654558
Answer:
T = 120.3 N
Explanation:
Since, the tension in the rope is acting against both the centripetal force and the weight of the stone. As both act downward towards center of the circle and tension acts towards point of support that is upward. So, tension will be equal to the sum of centripetal force and weight of the stone:
Tension = Centripetal Force + Weight of Stone
T = mv²/r + mg
where,
m = mass of stone = 5.31 kg
r = radius of circle = length of string = 2.99 m
g = 9.8 m/s²
Therefore,
T = (5.31 kg)(6.2 m/s)²/(2.99 m) + (5.31 kg)(9.8 m/s²)
T = 68.27 N + 52.03 N
<u>T = 120.3 N</u>