Answer:
-1/8
Step-by-step explanation:
lim x approaches -6 (sqrt( 10-x) -4) / (x+6)
Rationalize
(sqrt( 10-x) -4) (sqrt( 10-x) +4)
------------------- * -------------------
(x+6) (sqrt( 10-x) +4)
We know ( a-b) (a+b) = a^2 -b^2
a= ( sqrt(10-x) b = 4
(10-x) -16
-------------------
(x+6) (sqrt( 10-x) +4)
-6-x
-------------------
(x+6) (sqrt( 10-x) +4)
Factor out -1 from the numerator
-1( x+6)
-------------------
(x+6) (sqrt( 10-x) +4)
Cancel x+6 from the numerator and denominator
-1
-------------------
(sqrt( 10-x) +4)
Now take the limit
lim x approaches -6 -1/ (sqrt( 10-x) +4)
-1/ (sqrt( 10- -6) +4)
-1/ (sqrt(16) +4)
-1 /( 4+4)
-1/8
64,000/2=32,000
32,000/12= $2,666.67 per paycheck
Answer:
B
Step-by-step explanation:
On a coordinate plane, an exponential function increases in
quadrant 3 into quadrant 4 and approaches y = 0. It goes through
(negative 1, negative 2) and crosses the y-axis at (0, negative 0.25) ⇒ last answer
HOPE IT HELPS ....
Answer:
p = -0.002n +145
Step-by-step explanation:
You are given two points: (n, p) = (46000, 53) and (50000, 45). The 2-point form of the equation of a line is useful for this.
y = (y2 -y1)/(x2 -x1)(x -x1) +y1
p = (45 -53)/(50000 -46000)(n -46000) +53
p = -8/4000(n -46000) +53
p = -0.002n +145 . . . . . demand equation
8/856=<span>0.00934579439
856/8=107</span>