1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
3 years ago
5

Can there be displacement of an object in the absence of any force acting on it? Think, Discuss it with your friends and teacher

?
Physics
1 answer:
Fudgin [204]3 years ago
5 0

Answer:

An object can have a displacement in the absence of any external force acting on it

Explanation:

When a object moves with a constant velocity (v), then it gets displaced in the direction of motion but the net external force experienced by the object is zero.

F  external  =ma

If object moves with constant velocity, acceleration is zero.

Since, a=0  ⟹F  external  =0

Using  s=ut+  1/2 at  ^2

 ⟹    Displacement    s=ut    (∵a=0)

Hence, an object can have a displacement in the absence of any external force acting on it

Hope this helped you:)

You might be interested in
a concrete slab 20 m long and weighing 400,000 N is supported by one pillar. If a 19,600 N car is parked 8 meters from one end.
LUCKY_DIMON [66]

let the distance of pillar is "r" from one end of the slab

So here net torque must be balance with respect to pillar to be in balanced state

So here we will have

Mg(r - L/2) = mg(L/2 - 8)

here we know that

mg = 19600 N

Mg = 400,000 N

L = 20 m

from above equation we have

400,000(r - 10) = 19,600 (10 - 8)

r - 10 = 0.098

r = 10.098 m

so pillar is at distance 10.098 m from one end of the slab

7 0
3 years ago
Some one help my science homework is due tomorrow and I'm so stuck with question 8-9, and 11-12
yuradex [85]
Off the top of my head, I only know 9 and 11, so I'll answer those two.

9) A heterotroph is an organism that relies on other organisms for food/energy
    An autotroph can produce its own food from inorganic compounds (light)

11) Vascular plants have specialized tubes for transporting nutrients
      Nonvascular plants do not have such tubes and are simpler
5 0
3 years ago
10 points!! If you help!!!
marta [7]

For Mass

K.E = (1/2*mv^2)

Explanation:

Kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.

4 0
2 years ago
a car takes 1 hour to travel 100 km along a main road and the half hour to travel 20 km along a side road what is its average sp
kolezko [41]
80 km per hour i believe. i’ll admit i’m american so we don’t use km lol, but the math should be the same. total distance = 120km, and total time = 1.5 hours. 120/1.5 = 80.
3 0
3 years ago
The drawing shows a large cube (mass = 21.0 kg) being accelerated across a horizontal frictionless surface by a horizontal force
MaRussiya [10]

Answer:

The blocks must be pushed with a force higher than 359 Newtons horizontally in order to accomplish this friction levitation feat.

Explanation:

The first step in resolving any physics problem is to draw the given scenario (if possible), see the attached image to have an idea of the objects and forces involved.

The large cube in red is being pushed from the left by a force \vec{P} whose value is to be found. That cube has its own weight \vec{w}_1=m_1\vec{g}, and it is associated with the force of gravity which points downward. Newton's third law stipulates that the response from the floor is an upward pointing force on the cube, and it's called the normal force \vec{N}_1.

A second cube is being pushed by the first, and since the force \vec{P} is strong enough it is able to keep such block suspended as if it were glued to the first one, due to friction. As in the larger cube, the smaller one has a weight \vec{w}_2=m_2\vec{g} pointing downwards, but the normal force in this block doesn't point upwards since its 'floor' isn't below it, but in its side, therefore the normal force directs it to the right as it is shown in the picture. Normal forces are perpendicular to the surface they contact. The final force is the friction between both cubes, that sets a resistance of one moving parallel the other. In this case, the weight of the block its the force pointing parallel to the contact surface, so the friction opposes that force, and thus points upwards. Friction forces can be set as Fr=\mu~N, where \mu is the coefficient of static friction between the cubes.

Now that all forces involved are identified, the following step is to apply Newton's second law and add all the forces for each block that point in the same line, and set it as equal its mass multiplied by its acceleration. The condition over the smaller box is the relevant one so its the first one to be analyzed.

In the vertical component: \Sigma F^2_y=Fr-w_2=m_2 a_y Since the idea is that it doesn't slips downwards, the vertical acceleration should be set to zero a_y=0, and making explicit the other forces: \mu N_2-m_2g=0\quad\Rightarrow (0.710)N_2-(4.5)(10)=0\quad\Rightarrow N_2=(4.5)(10)/(0.710)\approx 63.38 [N]. In the last equation gravity's acceleration was rounded to 10 [m/s^2].

In its horizontal component: \Sigma F^2_x=N_2=m_2 a_x, this time the horizontal acceleration is not zero, because it is constantly being pushed. However, the value of the normal force and the mass of the block are known, so its horizontal acceleration can be determined: 63.38=(4.5) a_x \quad \Rightarrow a_x=(63.38)/(4.5)\approx 14.08 [m/s^2]. Notice that this acceleration is higher than the one of gravity, and it is understandable since you should be able to push it harder than gravity in order for it to not slip.

Now the attention is switched to the larger cube. The vertical forces are not relevant here, since the normal force balances its weight so that there isn't vertical acceleration. The unknown force comes up in the horizontal forces analysis: \Sigma F_x=P=m a_x, since the force \vec{P} is not only pushing the first block but both, the mass involved in this equation is the combined masses of the blocks, the acceleration is the same for both blocks since they move together; P=(21.0+4.5) 14.08\approx 359.04 [N]. The resulting force is quite high but not impossible to make by a human being, this indicates that this feat of friction suspension is difficult but feasable.

4 0
3 years ago
Other questions:
  • If a project team decided that a drugstore would earn the LT Credit—LEED for Neighborhood Development Location, what other Locat
    9·1 answer
  • Does potential energy increase with temperature?
    5·2 answers
  • What are compounds made of
    9·1 answer
  • Hydrogen fuel cells are used on the space shuttle to provide the shuttle with all of its electrical energy. Explain why fuel cel
    6·1 answer
  • If a circle was flattened by pushing down on it, it would most likely form into the shape of an(1) ___ which has(2)___focal poin
    6·2 answers
  • A ceiling fan with 90-cm-diameter blades is turning at 64 rpm . Suppose the fan coasts to a stop 28 s after being turned off. Wh
    8·1 answer
  • Determine the density of an object that has a mass of 149.8 g and displaces 12.1 mL of water when placed in a graduated cylinder
    13·1 answer
  • A cyclist is riding his bike up a mountain trail. When he starts up the trail, he is going 8 m/s. As the trail gets steeper, he
    12·1 answer
  • A camera lens with focal length f = 50 mm and maximum aperture f>2
    9·1 answer
  • If three balls of different materials were dropped at the same time from the same height, which would hit the ground first? (Ass
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!